Universitat Poliecnica de Catalunya

Department of Applied Mathematics IV

Ph. D. Thesis

Design and Analysis of Semantically Secure
Public Key Encryption Schemes

Author: David Galindo Chamn

Advisor: Sebasé Marin Mollevi

Jury: Josep Domingo-Ferrer (Universitat Rovira i Virgili)
Rosario Gennaro (IBM Research)
Carles Padr (Universitat Poliécnica de Catalunya)
Jordi Quer (Universitat PoBicnica de Catalunya)
Tsuyoshi Takagi (Technische UnivegdiDarmstadt)

May 2004



ABSTRACT. An encryption schemis a procedure that enables two parties to securely com-
municate over a public channel, in such a way that if a malicious party intercepts the information
exchanged, it cannot extract the original message. In public key cryptography, the keys needed
to encrypt and decrypt are different, the encryption key being public, thus available to legitimate
and illegitimate users. Although encryption schemes are basic objects in public key cryptogra-
phy and have been studied since the birth of this subject, the current demanding security notions
and some recent developments in cryptanalysis makes designing encryption schemes an active
research area. In this work, encryption schemes sétinantic securitare studied. On the one

hand, new schemes are proposed and analysed and, on the other hand, some relevant previous
schemes are revisited.
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Introduction

Nowadays there is a widespread use of information technologies in many areas of the
world, and securing this exchange of information has become a crucial task. Cryptogra-
phy plays here a fundamental role. Concerned in the beginning with providing privacy
when two parties communicate over an insecure channel, the arrigabtt key cryp-
tographyin the late 70’s extended the matters that cryptography can deal with. As
Oded Goldreich suggests in the introduction to [Gol01], “cryptography can be viewed
as concerned with the design of any system that needs to withstand malicious attempts
to abuse it”. In this section some basic concepts about modern cryptography are briefly
presented, as well as the topics to which our research is devoted.

Encryption schemes

An encryption schemis a procedure that enables two parties to securely communicate
over a public channel, in such a way that if a malicious party intercepts the information
exchanged (commonly called ciphertext and denoted Jaycannot extract the original
message (also called plaintext and denoted)y while the intended recipient can
recover it efficiently. A little more formally, an encryption scheme consists at least
of an encryption algorithnknc, run by the sender, with input a encryption keyand

a messagen, and output a ciphertext and a decryption algorithrec, run by the
receiver, with input a decryption kejk and ciphertext, and output a stringn. The
minimal requirement these algorithms must satisfy is Bt dk, Enc(ek, m)) = m.

The main difference between a legitimate and illegitimate party is that the former is
in possession of the decryption kél, which is kept secret. Generally, the parameters
that must be kept secret are contained indéeret key As is well-known, encryption
schemes are divided into two categories, depending on whether encryption and decryp-
tion keys coincidesymmetricor private-keyencryption schemes, wheeg = dk, and
asymmetrior public keyencryption schemes, in whiatk anddk are different. In this
work we study public key schemes, in which the encryption key is made public (hence
the name), i.e. available to all users, including the adversaries, while the decryption
key is only known by the recipient of the communication. The main advantage of an
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asymmetric scheme with respect to a symmetric scheme is that the parties do not need
to agree in a common key before communicating, but it has the disadvantage of be-
ing hundreds of times slower than symmetric schemes. For this reason, asymmetric
schemes are not suitable for ciphering long messages. A way to solve this problem is to
design a so-calledybrid schemgthat is, a public key schentE obtained by securely
integrating an asymmetric scheR&E and a symmetric schen®E. In this case, the
asymmetric scheme is used to encrypt a keysually referred to asession keywhile

the symmetric scheme encrypts the long message under. key

Provable security

Parties in a cryptographic protocol are modeled as algorithms executed by a computer.
Specifying its computational capacity is a primary step to determine which tasks the par-
ties can efficiently perform. In other words, we look at cryptography framaraplexity-
theoreticpoint of view. Roughly speaking, efficient computations are those that can
be carried out by algorithms that run in polynomial time. In this context, some well-
defined problems arise that are conjectured to be unsolvable in polynomial time without
the knowledge of some secret information. These problems are used to design crypto-
graphic protocols, and will be referred to@®mic primitives

To devise a way to prove formally that a given cryptographic protoce¢cirehas
required a lot of effort from researchers. The techniques developed to solve this ques-
tion have led to the so-callgmtovable securityparadigm. The idea of provable security
was introduced in the pioneering work of Goldwaser and Micali [GM84]. Bellare ex-
plains this paradigm in [Bel98] as follows: take some cryptography goal, like achieving
privacy via encryption. The first step is to make a formal adversarial moded efinte
what it means for an encryption scheme to be secure. With this in hand, a particular
scheme, based on some particular atomic primitive, can be analyzed from the point of
view of meeting the definition. Eventually, one shows that the scheme “works” via a
reduction. The reduction shows that tely wayto defeat the protocol is to break the
underlying atomic primitive. In other words, there is no need to directly cryptanalyze
the protocol: if it were possible to find a weakness in it, there would be an unexpected
one in the underlying atomic primitive. So one might as well focus on the atomic prim-
itive; and if we believe the latter to be secure, we know without further cryptanalysis of
the protocol that the protocol is secure.

An important point in the last step is that in order to enable a reduction one must
also have a formal notion of what is meant by the security of the underlying atomic
primitive: which attacks exactly does it resist?

The main generic disadvantage of the schemes delivered by the standard provable
security approach is that they are inefficient. For this reason, standard makers did not
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take it into consideration and simply worked for several years by trial and error. Only
in the late nineties, when subtle attacks against standardized schemes were found in
[Ble98, CNS99, CHJ99], standard bodies were convinced this ad-hoc approach was not
correct. In this way, Bellare and Rogaway introduced in [BR93] the Random Oracle
Model (ROM), an idealized model of computation aiming to bridge the gap between
provable security and efficiency. In this model, concrete objects such as cryptographic
hash functions are treated asly random functions. This allows us to derive secu-
rity proofs more easily and, usually, the schemes in this model are simpler and more
efficient. The problem is that the significance of a proof in the ROM is somewhat debat-
able, since hash functions are deterministic and hence not even probabilistic. For this
reason, security proofs using the ROM cannot be considered as actual proofs but rather
as heuristic arguments. The idea is that a proof in the ROM gives a good indication
about the security of a protocol and, in fact, several standardisation related efforts such
as NESSIE [Nes03] or ISO/IEC [Sho04] accept cryptographic protocols with proofs in
this model.

With the deployment of this model, the idea of a concrete or quantitative treatment
of security arises. One would like to derive concrete estimates from the proof: if a
reduction is efficient, the security loss is small and the existence of an efficient adversary
leads to an algorithm for solving the underlying mathematical problem, which is almost
as efficient. Then, the more efficient the reduction is, the shorter the key size of the
scheme. For this reason, the concrete security performance has become a very important
feature when evaluating a cryptographic protocol.

Our contributions

This thesis is devoted to the study of public key encryption schemes with semantic
security within the provable security paradigm. We deal with the design of new schemes
with appealing features as well as with the careful revision of some existing proposals.
The reader is assumed to be familiar with cryptography basics, but the main concep-
tual tools needed to describe our research are included in the exposition. In this sense,
this document is aimed at being self-contained. We emphasize that our approach is both
theoretical and practical, that is, we state definitions and theorems in a rigorous way,
but we have in mind that, in the end, these theoretical results must be applied in a real
setting. Therefore, cryptographic practice plays an important role in our discussions.
The rest of this work is organized as follows. In Chapter 1 the fundamental concepts
of provable security for public key encryption are presented. This includes basics from
probability and complexity theories, formal definitions of symmetric and asymmetric
encryption schemes, security notions and mathematical hard problems to build secure
protocols. For the sake of completeness, a model for hybrid encryption design, known



as KEM-DEM methodology, is described. This model has gained wide acceptance in
the cryptographic community.

In Chapter 2, two new schemes with semantic security against passive adversaries in
the standard model are presented. Both schemes base their security in factoring related
hard problems and have a fast encryption. In the first place, we present Rabin-Paillier
scheme [GMMV02], whose encryption has one-wayness equivalent to factoring. We
also construct a new trapdoor permutation based on factoring, which has interest in
itself. The semantic security of the scheme is based on an appropiate decisional as-
sumption, named as Decisional SmzdiResidues assumption. The robustness of this
assumption is also discussed. We point out that an improvement of our results has been
presented in [KTO3]. In the second place, an elliptic curve scheme is proposed, named as
Lifted-Rabin scheme [GMTV04]. It provides one-wayness equivalent to factoring and
faster encryption than the previous known semantically secure elliptic curve schemes.
Indeed, it is three times faster in encryption than the standard EI Gamal scheme over
elliptic curves. On the negative side, its decryption procedure is quite slow and presents
large key sizes. We point out that several interesting techniques and cryptographic ob-
jects have been developed in its design. In this work some ideas from our previous
research in [GMMV03b, GMMV03c] have been used.

Chapter 3 is devoted to revisiting some of the most relevant asymmetric schemes
with semantic security against adaptive adversaries appearing in the literature. This
includes both widely used theoretical results as well as schemes for commercial appli-
cations. On the one hand, we identify some ambiguities in the security proof of the
popular conversion proposed by Fujisaki and Okamoto in 1999. From private and pub-
lic key encryption schemes with weak security, this conversion designs a hybrid scheme
with strong security. The importance of this conversion stems from the fact of being the
most used generic conversion to date in the literature. In doing so, we continue with
the careful revision of the provable security techniques initiated by Shoup in [Sho01],
where this author questioned some properties of the OAEP scheme [BR95], which were
accepted without proof. We modify the Fujisaki-Okamoto transformation to remove
the ambiguities detected, and to prove that the resulting conversion is secure using the
Random Oracle heuristic. The security proof is phrased using current widely accepted
proof techniques. We also improve the concrete security with respect to certain primi-
tives. This research has been published in [GMMV03a, GMMV04].

Furthermore, we re-evaluate the elliptic curve based KEMs presented to become
standards (for instance in ISO/IEC 18033 and in the NESSIE project) which are called
ACE-KEM, ECIES-KEM and PSEC-KEM. We analyse both their security properties
and performance when elliptic curves with efficiently computable bilinear maps are
used. It is also shown that ECIES-KEM arises as the best option among these KEMs
when such curves are used. This is remarkable, since NESSIE [Nes03] did not se-
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lect ECIES-KEM as a candidate for standardization. This work has been presented in
[GMVO04].
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Chapter 1

Preliminaries

In this chapter we introduce the main tools needed to present our results. In this way,
Section 1.1 includes some concepts about probability and complexity theory and defi-
nitions of basic cryptographic objects that are used in subsequent sections. Section 1.2
deals with the formal definitions involved in public key encryption schemes, containing
also a widely accepted model for hybrid encryption. In Section 1.3, standard security
definitions for encryption schemes are presented, while in Section 1.4 some mathemat-
ical assumptions to be used in protocol design are described. Widely used as well as
recently proposed assumptions are included, some of them arising from this research.

1.1 Basic tools

Modern cryptography is a subject that takes basic ideas from probability and complexity
theories to build its core concepts. In this section, the key components we need from
these disciplines are presented. Most of this material resembles [DK02].

1.1.1 Finite probability spaces and random variables

Definition 1 (Probability space)
— A probability distribution(or simply adistribution) p = (p1,...,p,) is a tuple of
elementy; € R, 0 < p, < 1, calledprobabilities such thaty """ , p; = 1.
— Aprobability spacé(?, pg) is a finite set) = {w,...,w,} with a probability dis-
tribution po = (p1, . .., pn); thatis, po(w;) = p;. 2 is also called thesample space.
— An eventZ in a probability spacd(?, p,) is a subset? of (2. The probability mea-

sure is extended to events;(E) = Y pa(y).
yeE
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Typically the probability space consists of the set of all binary strings of a certain
length ¢, taken with the uniform probability distribution. That is, the sample space is
Q = {0,1}%, and each string is assigned with probability meagufeLet us denote by
{0, 1}* the set of all finite length binary strings.

Definition 2 (Conditional probability) Let (€2, p,) be a probability space and, B C
2 be events, withq (B) # 0. Theconditional probabilityof A assumingB is

_ pQ(‘A’ B)
Pl AP =7, )

where separating events by commas means combining therAMRh

Definition 3 (Random variable) Let(£2, p,) be a probability space. Amap : Q@ —
Y is called aY -valuedrandom variabl®n €. Thedistributionpx of a random variable
X is the image opg, under.X:

px(y) = pa({w € QX (w) = y}) fory € Y.

Considering the distribution of a random variable: 2 — Y means considering
the distribution of the probability space induced as imag& doy X. It is usual to look
at aY'-valued random variable as a probability distribution over

Often in the literature the probability space is not specified when dealing with a ran-
dom variable. For example, we may say thais a random variable assigning values in
the set of all strings, so th& [X = 00] = 1 andPr [X = 0111] = 2. Itis assumed that
X depends on a certain probability spd€k pq), but it is not needed to further spec-
ify it. As mentioned before, this probability space consists of all strings of a particular
length. Typically, these strings represent random choices made by some randomized
process (see Section 1.1.2), and the random variable is the output of the process.

Definition 4 (Expected value) Let X be a random variable mapping to real numbers.

Then itsexpected valuer meanis E [X] = ) ~ X (w) - pa(w).
we

Definition 5 (Joint distribution)

— Let Xy,..., X, be random variables, defined over some (finite) probability space
and each one with its image séX;, . . ., X, are calledjointly distributedif there is a
joint probability distributionpx of X;, ..., X,, thatis,

PriXi=ux1,..., X, =2, ] = px(x1,...,2,).
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— The marginal distributiom;, 1 < i < r, is the image opx under the projection
me Xy X .o x X, — X, (21, ., 1) —
which means
pi(w;) = px(m; M (x;)), for 1 <i < randxz; € X;.

— They are calledndependenif and only if
px(x1,...,x,) = sz(xz) for all (xq,...,2,) € X.
=1

If x € {0,1}*, then|z| denotes its length. IX is a set anghx is a probability distri-
bution overX, thenz ¥* X denotes that has been randomly chosen frakhwith the

distributionpyx. In particular, the expressian — X implies the uniform distribution.
If D is aY-valued random variable, then— D or y <2 Y denote thay has been
assigned a value frofii with distributionpp,.

1.1.2 Some basics from complexity theory

Our aim is to present a core concept in modern cryptography, the concept of feasible
computations, that is, the class of computations we assume the parties in a protocol
can perform, both legitimate users and adversaries. Our definitions are not completely
formal but suffice for the standard purposes. The reason is that the formal approach
needs the concept dluring machinea way to model @eterministic algorithmThis is

out of our scope, and we refer the interested reader to [HU79]. For us, a deterministic
algorithm 4 behaves like a mathematical mapping from strings to strings: appl§ing

to the same input several times always yields the same outgwthich is computed by

a sequence of steps decided in advance by the programmer. In conprexiahilistic
algorithm .4 may yield different outputs when applied more than once to the same input
x. We emphasize that both the input and the output of an algorithm are represented as
bit strings.

Definition 6 (Probabilistic algorithm) Given an inpute, a probabilistic algorithmA4

may toss a coin a finite number of times during its computation of the oytpard

the next step may depend on the results of the preceeding coin tosses. The number of
coin tosses may depend on the outcome of the previous ones, but it is bounded by some
constantt,, for a given inputz. The coin tosses are independent and the coin is fair,
that is, each side appears with probability2.
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Remarks:

— Another way to view a probabilistic algorithm is to consider the outcome of the
coin tosses as an additional input. We call the corresponding deterministic algorithm
Ap the deterministic extensioof A, taking as inputs the original and a string-
containing the coin tosses.

— Givenz, the output4(x) is not a single constant value, butvavalued random vari-
able, provided the outputs of are inY. Then, we can ask for the probability of
the event ‘A outputsy on inputz”. From the definition of a probabilistic algorithm,
the number of coin tosses for a givens bounded by a constaft. We can assume
this number is exactly,, and then coin tosses can be viewed as given by the uniform
distribution in{0, 1}*=. The probability of an outcomeis 1/2*, and hence

{r e {0, 1} | Ap(z,1) = y}|
2 '

— Letpx be a probability distribution on the domain of a probabilistic algorithmA4
with outputs inY. Randomly selecting an € X with distributionpx and computing
A(x) can be viewed as a random variable oVerWe can define then a probability
distribution overY:

PriA() =y =

Pap(y) = Pr [A() =y | o 2 X].

When describing the behaviour of a probabilistic algorithm, it is also useful to view
its running time for any input: as a random variable, denot&d(x). Let poly(¢) be
the class of functiong : Z* — R* upper bounded iZ* by some polynomial ifR[¢].
Hereafter/ denotes a positive integer.

Definition 7 (PPT algorithms) A probabilistic polynomial time (PPTalgorithm is a
probabilistic algorithmA, such thafl 4(z) is bounded by’ (|z|), whereP(¢) € poly().

The running time is measured as the number of steps in our model of algorithms, i.e. the
number of steps of the probabilistic Turing machine. Tossing a coin is one step in this
model.

Definition 8 (PT algorithm) A polynomial time (PT)algorithm is a a deterministic
algorithm A, such thafl'4(x) is bounded byP(|z|), whereP(¢) € poly(¢). The running
time is measured as defined above.

The following definition provides a useful tool to analyze the output distribution and
running time of particular algorithms.

Definition 9 (Expected running time) Theexpected running timef a PPTalgorithm
Ais defined a& [T4(z)], i.e the expected value @ (), the random variable measur-
ing its running time.
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The concept of aegligible functions a key step in order to define a feasible com-
putation.

Definition 10 (Negligible function) The class ohegligible functionson a parameter
¢ € Z*, denoted asegl(¥), is the set of functions : Z* — R* such that, for any
polynomialp € R[¢], there exists\/ € R* such that (/) < Z% forall ¢ € Z7.

When an event happens with probability at least v(¢), wherev () is a negligible
function, we say it occurs witbverwhelmingprobability. Roughly speaking, a com-
putation isfeasiblewhen it can be carried out by a PPT algorithm with overwhelming
success probability with respect to the size of the input. Formally,

Definition 11 (Feasible computation) A computational probler® is feasibleif there
exists aPPT algorithm A such that for any instance of P, A(x) yields the correct
answer with overwhelming probability with respectt¢.

This definition may seem too restrictive, since we are asking®hateasible if and
only if any instance o can be correctly computed with probability almost 1. However,
the following lemma states that it suffices to correctly answer with probabili2yplus
a non-negligible quantity.

Lemma 12 Let P, Q € negl(¢) and.A be aPPTalgorithm which computes a function
f: X — Y, with

PriA(z) = f(x)] > for all z € X.

1
2 P(lxl)

Then, by repeating the computatiof(x) and returning the most frequent result, we
obtain aPPTalgorithm A, such that

forall z € X.

Pr [/l(:c) = f(x)} =1 Q(|1$|)

Proof: See [DK02] pp. 118-119. n

Finally, we state and prove a useful lemma when dealing with two non-independent
calls to a probabilistic algorithm, which is a common situation in cryptographic reduc-
tions. In this case, it is no longer possible to use independence to compute the resulting
success probability. The proof is quite technical, and the reader can skip it without
affecting his/her understanding of the rest.
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Lemma 13 Consider a probabilistic algorithrd with inputx € X, a surjective map
f: X — Y and a predicate” on the input and the output of (e.g. P(z, .A(x)), which
is true if A(x) is the correct output). Let = Pr[P(z, A(x)) | x — X]. Then,

Pr[P(z1, A1) A P(ag, Alws)) | 21— X; @0 — f7H(f(21))] > €°
where the internal random coins used.dyin the two calls are independent.

Proof: Letw, = Pr[f(z) =y |z « X] ande, = Pr[P(z, A(x)) | z — f~(y)], for
y €Y. Theny ., w,=1land} ., wye, =c.
Given the following experimentz; « X; zy < f~1(f(z1)), then

Pr{P(z1, A(x1)) A P(xq, A(x2))] =
=Y Pr{P(zy, A1) A P2, A(w2)) A flan) = y] =

yey

= Pr[P(ay, A(21)) A P(2, A(22)) | f(21) = y] Pr[f(21) = 9]

yey

But conditioning byf(z;) = y is equivalent to modifying the experiment intg «
IHy); xo « f~(y). So, in this probability space; andx, are identically distributed
independent random variables and

Pr[P(x1, A(21)) A Paz, A(x2)) | f(a1) = y] = (Pr[P(a1, A(21)) | f(z1) =y))° =€

By using for instance the Cauchy-Schwartz inequality for a suitable weighted inner
product (i.ea-b =3 . wya,b,), itis straightforward to see that . w,c> > <*. m

Observe that, although the two callsAocare not independent, they share part of the
input. There may be then a positive correlation between their outputs due to the map
f, which allows us to upper bound the success probability by the square of the success
probability on a single call.

1.1.3 Atomic primitives

Speaking informally, aone-way functioris a mapf : X — Y which is easy to
compute but hard to invert. It is infeasible to compute pre-imagesofy. But if f is
intended to be used for encryption purposes, themust be a special one-way function,
calledtrapdoor one-way(TOW) function. Knowing some information, the trapdoor
information, it must be feasible to inveff and f remains one-way only if this trapdoor

is kept secret. In order to define one-wayness, we have to consider not only single
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functions, but, more generally, families of functions defined over appropiate index sets.
In the following, the components needed to define a TOW function are described, while
the definition is given afterwards. The concept of a key pair generator, which plays a
central role hereafter, deserves special attention.

A polynomial size ses a set sequencel’ = {X,},z+, such that there exists a
functionpx (¢) € poly(¢), andX, C {0,1}*x® for all ¢ € Z*. A sequence of proba-
bility distributions D = {D,},cz+ over X is polynomial time samplablesamplable for
short) if there exists a PPT algorithm sampliiig with distribution D, for all ¢ € Z™.

A polynomial size sefX is samplabldf there exists a PPT algorithm that on inpit
outputs a uniformly distributed random elementiip. To simplify the notation, here-
after asetand adistribution will denote apolynomial size seand apolynomial time
samplable distributiomespectively, and subindexes will be omitted whenever possible.

Definition 14 (Keypair generator) Let PK andSK sets be such that K, are all dis-
joint, and assume that the parametaran be derived fromk € P K, by a deterministic
PT algorithm. In this context/ is called thesecurity parameterAssume also thatk
can be obtained frorsk € SK, by a deterministid®T algorithm. Let/ be a samplable
probability distribution overP K x SK. The triple(PK, SK, I') will be called akeypair
generator

Given a keypair generator,set familyX is defined ag X« } ke px @nd amap family
f:X — Zis defined aq fo« : Xpk — Zpk}pkerr. Notice that the elements iRK,
can be interpreted as indexes, although they provide more information. Theréby
public and characterizes the séfs,, Z,« as well as the ma,.. On the other handk
is kept secret.

Finally we specify how we deal with PPT algorithms whose domgiis a joint
probability spaceX; X, ... X, constructed by iteratively joining fibers;,. ., , to
Xy...Xj 1, wherex; «— X, ., , is the conditional distribution of; € X}, o, ,,
assumingX; = z1,..., X;_; = z,_1. The notation

Pr [A(xlxg .. .JIT) = f(l‘1$2 .. .LET) ‘ Ty < X17I2 «— X2|LI317 N A T‘xl---mr—l]

means the probability of the eveAtz . .. x,.) = f(x12s ... z,) iffirst x; is randomly
chosen, then,, thenzs, ... , and so on.

Definition 15 (TOW function) Let(PK,SK,I) be a keypair generator, and, 7 be

set families. A map family : X — Z is called aTrapdoor One-Wayunction (with

respect to the keypair generator) if:

— there exists @T algorithm that on input(pk, ) outputs f,(z) for all pk € PK,
S ka.
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— there exists a map family: Z — X, g = {9« : Zox — Xpk} and aPT algorithm
that on input(sk, fok(z)) outputsSge( fok(z)) = x, for all sk € SK, x € X

— for anyPPTalgorithm A%V,
Pr [ fo (A% (pk, for(2))) = for(@) | (Pk,sk) — Ip; x — Xy ] € negl(¢).

The following definition, based on [Poi00], is somewhat related to the notion of
probabilistic one-way encryption. LePK, SK, I) a keypair generator. LeY, Y, Z be
set families,f : X x Y — Z a family of injective maps and : Z — X their partial
inverses, i.eg«(fok(z,y)) = x for all possible pairgpk, sk) generated by and for all
x e ka andy S ka.

Definition 16 (TPOW function) The injective map family, is called aTrapdoor Par-
tial One-Way (TPOWfJunction (with respect to the keypair generator) if:

— there exists T algorithm that on inputpk, x, y) outputsf,(x, y) for all pk € PK,
xr € Xpk andy € Y.

— there exists T algorithm that on inputsk, f.(x,y)) outputsge(z) = (x,y) for all
sk € SK and for all z € Z.

— for anyPPTalgorithm AW,

Pr [ AP (pk, fox(z,y)) = | (pk,sk) « Iy @ — Xp; y < Ypi| € negl(0).

The remaining definitions are important to state and to deala@tisional assump-
tions(cf. Section 1.4), a crucial building block in modern cryptography.

Definition 17 (Polynomial indistinguishability) LetD,, D, be probability distributions
over a setX. ThenD, and D, are polynomially indistinguishabledenoted a®); ~ D,
if for any PPTalgorithm A

|Pr[A(1%, D1y) = 1] — Pr [A(1%, Dyy) = 1]]| € negl(¢).

Property 18 Let D, D, be two families of probability distributions over a s€tsuch
that D; ~ D,, and letg : X — Y be a bijection map such thatand ¢! can be
computed in probabilistic polynomial time. Théh ~ D, is equivalent tay(D;) ~
9(Ds).
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1.2 Encryption schemes

In this section the definitions of public and private key encryption schemes are given,
as well as the definitions of some cryptographic primitives that are needed to describe a
well known model for hybrid encryption.

1.2.1 Public and private key encryption schemes

Let us first define an asymmetric encryption scheme using the terminology introduced
in the previous section.

Definition 19 (Asymmetric encryption schemes)Let (PK, SK, I) a keypair genera-
tor. Anasymmetric encryption schenR&E consists of three algorithms

(PKE.KeyGen, PKE.Enc, PKE.Dec),

with setsM, R and(C, with the following properties:

— The key$pk, sk) < PKE.KeyGen(1¢) are generated by using the sampling algorithm
for I.

— PKE.Enc is aPPTencryption algorithm which, on inputs a public kgy ¢ PK and
m € M, runs on a randomnesse R and returns a ciphertext € Cpy.

— PKE.Dec is aPT deterministic decryption algorithm that, on inputs a secretdkey
SK, andc, returns a stringn . We require that ifsk, pk) < PKE.KeyGen(1¢), then

PKE.Dec(sk, PKE.Enc(pk, m,r)) = m for all (m,r) € My X Rpk.

Definition 20 (Symmetric encryption schemes)A symmetric encryption schens#E
consists of three algorithm$SKE.KeyLen, SKE.Enc, SKE.Dec), with the following prop-
erties:

— SKE.KeyLen is a PT algorithm which on input a security parametéf returns a
positive integelS K E. K ey Len.

— SKE.Encis aPTencryption algorithm with inputs a symmetric key {0, 1}5KE-KeyLen
and a message: € {0, 1}*, that is, an arbitrary length bit string. It outputs a cipher-
textc € {0, 1}* with |¢| = |m|.

IThis string can be a special string, meaning there was a failure in the execution of the
algorithm. It will be referred to as the reject string or reject symbol.
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— SKE.Dec is aPTencryption algorithm with inputs a symmetric key {0, 1}55F-KeyLen
and a ciphertext € {0, 1}*. It outputs a message with |m| = |c| or reject. We re-
quire the followingsoundnessondition: for all ¢, for all x € {0, 1}5KE-KeyLen gnd
forall m € {0,1}*

SKE.Dec(x, SKE.Enc(1¢, k,m)) = m.

1.2.2 Hybrid encryption

We point out that the definition of an asymmetric encryption scheme implies that it
has a restricted message space given a security parameter. Moreover, practice shows
that asymmetric schemes are often hundreds of times slower than symmetric schemes.
Consequently, a useful approach to design an efficient asymmetric scheme is to build
a hybrid encryption schemidE, where one uses asymmetric cryptographic techniques

to encrypt a session key, which is then used to encrypt the actual arbitrary length
message using symmetric cryptography.

In the sequel, a model introduced in [CS, Sho04] for designing hybrid schemes is
presented. This model is built from two primitives:kay encapsulation mechanism
KEM and adata encapsulation mechaniddEM, which are defined next. XEM is
an asymmetric primitive while ®EM is a symmetric primitive. Roughly speaking, a
KEM is a mechanism to encrypt and decrypt random session keys, wbhiVauses
this random key to efficiently encrypt and decrypt arbitrary length messages.

Definition 21 (Key encapsulation mechanisms).et (PK,SK, ) a keypair genera-
tor. Akey encapsulation mechanigfEM consists of three algorithms

(KEM.KeyGen, KEM.Enc, KEM.Dec),

along with setdC andC, with the following properties:

— The keyspk, sk) «+ KEM.KeyGen(1¢) are generated by using the sampling algorithm
for I.

— KEM.Enc is a PPT encryption algorithm which, on inputs a public kgy € PK,
returns a symmetric-key/encapsulation p@k, Cy) € K x C.

— KEM.Dec is a PT deterministic decryption algorithm that, on inputs a secret key
sk € SK, and an encapsulatio@, returns a symmetric kel{ or reject. We require a
KEM to besound that is, for all/, for all (pk,sk) € PK, x SK, and for any output
(K, Cy) of KEM.Enc

KEM.Dec(sk, Cy) = K.
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A key encapsulation mechanism also specifies a positive intégev/. KeyLen, i.e.
the length of the symmetric key in the outputiyM.Enc and KEM.Dec.

Definition 22 (Data encapsulation mechanismsA data encapsulation mechani&M
consists of three algorithm@EM.KeyLen, DEM.Enc, DEM.Dec), with the following
properties:

— DEM.KeyLen(1%) specifies a key length EM. K ey Len.
— DEM.Enc is aPT encryption algorithm which, on inputs a symmetric key
K e {O, 1}DEM.KeyLen
and a plaintextn € {0, 1}*, returns a ciphertext’; € {0, 1}/™.

— DEM.Dec is a PT deterministic decryption algorithm that, on inputs a symmetric
keyK € {0, 1}PPM-KeyLen "and a ciphertext;, outputs a plaintextn € {0, 1} or
reject. We require the followingoundnesproperty: for all/, forall K € {0, 1}PEM-KeyLen
and for anym € {0,1}*

DEM.Dec(K,DEM.Enc(K,m)) = m.

Definition 23 (Hybrid encryption scheme) A hybrid encryption schemidE is a fam-
ily of asymmetric cyphers withl = R = C = {0, 1}* parametizered by the following
system parametersa key encapsulation mechanidkEM and a data encapsulation
mechanismDEM. Any combination oKEM and DEM may be used, provided that
KEM.KeyLen = DEM.KeyLen. The algorithms(HE.KeyGen, HE.Enc, HE.Dec),
are specified as follows:

(pk, sk) « HE.KeyGen(1¢) C « HE.Enc(pk,m) m « HE.Dec(sk, C)
1. (pk,sk) « KEM.KeyGen(1%) | 1. (K, Cp) «+ KEM.Enc(pk) | 1. Parse C as (Cg, C});
2. C1 < DEM.Enc(K,m) output reject otherwise
3. Set C = C()HCl 2. K « KEM.DeC(Sk,C())
4. Output C 3. m <« DEM.Dec(K, C1)
4. Output m
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A concrete DEM design

In the sequel, a concrete design of a data encapsulation mechanismdyammatric en-

cryption schemand aone-time message authenticacion c@lé\) is described. First,

the definition of aMAC algorithm is given and then the particulaREM construction is

presented. Informally speaking,MA algorithm allows us to verify the integrity of a
given string.

Definition 24 (Message authentication codeA one-time message authentication code
MA is a scheme that defines two positive integkefsl. KeyLen and M A.MacLen,
along with a functionMA.Eval. This function takes a symmetric keyyand a string

T € {0, 1}* as inputs, and computes as output a striviglC' of lengthAM A. M acLen.

Definition 25 (DEM2) DEM?2 is a family of data encapsulation mechanisms parame-
tizered by a symmetric encryption sche$hd and a message authenticacion cdda.

The valueDEM2.KeyLen is defined asSK E.KeyLen + MA.KeyLen. The algo-
rithms (DEM2.Enc, DEM2.Dec), are specified in Table 1.1:

Cy «+ DEM2.Enc(K,m) m «— DEM2.Dec(K, Cy)
1. Parse K as K = k||/, |k| = SKE.KeyLen | 1. Parse K as K = kl||x’
and |k'| = MA.KeyLen 2. If |Ch| < M A.MacLen output reject
2. ¢ < SKE.Enc(k,m) 3. Parse C; as C; = c||MAC
3. MAC — MA.Eval(x’,¢) where |[MAC| = M A.MacLen
4. Set Cy = ¢||MAC 4. MAC" — MA.Eval(x/, c)
5. Output C4 5. If MAC # M AC' output reject
6. m «— SKE.Dec(k, c)
7. Output m

Table 1.1: DEM2 description

As we shall see in Section 1.3.2, the problem of designing data encapsulation mech-
anisms is essentially solved with this construction.

1.3 Security issues

In this section the most usual security notions for a encryption scheme are presented,
as well as the relations among them. For the sake of completeness, two fundamental
models arising from the cryptographic practice are covered.
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1.3.1 Asymmetric encryption security models

In order to treat the security of a cryptographic scheme rigorously one must specify two
things: thepower of the adversanyoth in terms of computation (time, memory etc.) and

in terms of access to the system, and wihvaakingthe cryptosystem means. An en-
cryption scheme access to the system means the type of attack (e.g. chosen plaintext or
chosen ciphertext), and breaking the encryption scheme should specify the functionality
the adversary has with respect to the plaintext. Examples of defining such functionali-
ties areone-waynessemantic securitgndindistinguishability of encryptiona/Ne first
formalize the notion of one-wayness for an asymmetric cryptosystem.

Definition 26 (One-way -OW) Consider the following game that an adversat{"’
plays against a system, using an asymmetric encryption scR&mavith security pa-
rameterl’.

1. The system runBKE.KeyGen(1¢), generating a keypai(pk, sk) and passes the
valuepk to the attacker4°V.

2. The system picks a message— M, and calculates the challenge ciphertext
¢* = PKE.Enc(pk, m). The system then passeéshack to the attacker.

3. The attacker outputs a guess for the messagen.

Let

(pk,sk) < PKE.KeyGen(1¢)

_ ow *\
Succ 4ow [PKE, ¢] = Pr | AV (pk,c*) =m m — My, ¢* — PKE.Enc(pk, m)

PKE is said to beone-wayif for any PPTattacker A", Succ 4ow [PKE, /] € negl(f).

The rigorous treatment of the security of encryption schemes was initiated in the
seminal work of Goldwasser and Micali [GM84], where they introduced two funda-
mental notions of security, semantic security and indistinguishability of encryptions.
Semantic securitys a computational analogue of Shannon’s definition of perfect se-
crecy [Sha49]. It requires that whatever information about the plaintext that one may
compute from the ciphertext and some a-priori information, it can be essentially com-
puted as efficiently from the a-priori information alone (this specific formulation was
suggested in [Gol93]). This definition is the most natural, because it directly addresses
the user’s concerns (i.e., that nothing can be gained by looking at the ciphertext). The
formalization we give here resembles [GLNO2].

Definition 27 (Semantic security -SS) Consider the following game that a 2-stage ad-
versaryA>S = (A, A,) plays against a system, using an asymmetric encryption scheme
PKE with security parametet”.
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1. The system runBKE.KeyGen(1¢), generating a keypaifpk, sk) and passes the
valuepk to the attacker4>S.

2. The algorithmA,; generates &T samplable distributionD, over M, and two
distinct PT computable functions, f : M, — {0,1}*. h specifies partial in-
formation (i.e. information leakage) regarding the plaintext that is given to the
adversary, andf specifies some information that the adversary claims to be able
to learn.

3. The system calculates the challenge ciphert&éxt=" PKE.Enc(pk,m), where
m «— Dy, and returngh(m), ¢*) to the algorithmA,.

4. The attacker outputs a guess {0, 1}* for f(m).

PKE is said to besemantically securi for any 2-stagePPTattacker.4%°, there exists
a benign 2-stage adversa®y®>> = (A1, A,), which follows the same game except that
it is not given the ciphertext, and “performs as well” as the real attacker. That is,
[ (pk, sk) « PKE.KeyGen(1%)
(Dpks hs f) < Ai(pk) ] <
m < Dpy, ¢* < PKE.Enc(pk, m)

Pr | As(Dyes b, £, h(m), &%) = f(m)

_ ke
Pr [ Aa(Dy o £.0m)) = ) | P43 PEERCen) ]

wherepn(¢) € negl(?).

Notice that the benign adversary is given a perfectly secure encryption of the plaintext
m, that is, it is being given nothing.

Indistinguishability of encryptions a technical definition requiring that, for any
two messages, it is infeasible to distinguish the encryption of the first message from
the encryption of the second message. The importance of the technical definition of
indistinguishability of encryptions stems from the fact that it was shown to be equivalent
to semantic security in a certain attack scenario (cf. [GM84]), while being easier to work
with and reason about.

Definition 28 (Indistinguishability - IND) Consider the following game that a 2-stage
adversaryANP = (A;, A;) plays against a system, using an asymmetric encryption
scheméKE with security parametet?.

1. The system runBKE.KeyGen(1¢), generating a keypaifpk, sk) and passes the
valuepk to the attackerd'NP.
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2. The algorithmA,; generates two distinct messages, m, € My, with the same
length. Next, it submits:y, m, to the system.

3. The system

(a) Chooses a bit uniformly at random fror{0, 1}.
(b) Calculates the challenge ciphertext= PKE.Enc(pk, m;) and returns this
to the algorithmA,.

4. The attacker outputs a gueggor b. The attacker wins the above gamé'if= b.

Let

(pk, sk) < PKE.KeyGen(1%)
(mg,ml) — .Al(pk) —1.
b+ {0,1}, ¢* = PKE.Enc(pk, m)

AdVAIND [PKE,E] =2xPr AQ(MO,ml, C*) =b

PKE is said to havendistinguishability of encryptions for any 2-stagePPTattacker
AND - Adv o [PKE, €] € negl(¥).

There is a fourth goal for an encryption scheme, called-malleability.It was proposed
in [DDN91], and roughly speaking implies that given a ciphertext of a plaintext, any
adversary cannot construct another ciphertext whose plaintext is meaningfully related
to the initial one. It is not usual to work with this notion when dealing with encryption
schemes, and we do not formalize it here.

In the following we describe the most extended attack models that are currently
considered for an asymmetric encryption scheme.

Definition 29 (Attack models) The attack algorithrod runs in two stages: pre-challenge
and post-challenge. Let the attacker have access to an o@cleg until the challenge
is issued, and access to the oracle after this time.

1. The attack is said to be eéhosen plaintext attackCPA) if the oracles are both
trivial, i.e. O; = O, and both returrreject for any input.

2. The attack is said to be glaintext checking attackPCA) if both oracles, when
queried with a pair(m, c), return 1 ifc encryptsm and 0 otherwise.

3. The attack is said to be ehosen ciphertext attackCCA1) or lunchtime attack
if the oracle O, decrypts messages (theref@fe(c) = PKE.Dec(sk, ¢)) but the
oracle O, is trivial.

4. The attack is said to be adaptive chosen ciphertext attackCA2) if both ora-
clesO; and O, decrypt messages, with the exception that the orégleeturns
reject if it is queried on the challenge ciphertext
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When the oracle®; and O, are not trivial, they are referred to adecryption oracles
Of course, if any oracle is queried with an invalid input, that is, outside the correct
domain, then it is returneetject.

The formalization of the first attack model was proposed in [GM84], the second in
[NY90] and the last one in [RS92]. Combining the goals and the attack maéals
CCA1, CCA2, we obtain nine security notions. The relations among them have been
studied in several works, and those with greater impact are [GM84, BDPR98, WSI02,
GLNO02]. In the following diagram the implications among them are specified. For
instanceNM-CPA — IND-CPA means that any asymmetric encryption scheme that is
NM-CPA is alsoIND-CPA. Non-trivial implications appear with reference to the work
in which they were first shown.

[WSI02] [BDPRYS]
SS — CCA2 IND — CCA2 ~—— NM — CCA2
! [WSI02] ! [BDPROS] !
SS — CCA1 =—— IND — CCA1 M — CCA1
! [GM84] ! [BDPROS] !
SS — CPA IND — CPA NM — CPA

Relations among security notions

The standard security notion for a general purpose public-key cryptosystiib-is
CCA2. The reason for this is that in [BDPR98] it was shown tN&-CCA2 andIND-
CCA2 were equivalent security notions. In the works [WSI02, GLNO2] it has been
shown that this notion is in fact very strong, since it turns out to be equivalent to
SS-CCAZ2, a claim that was implicitly assumed by many cryptographers without proof.
Hereafter]ND-CCA2 is referred asND-CCA as well asemantic security against adap-
tive adversaries.

1.3.2 Security notions for KEM-DEM hybrid encryption

In Section 1.2.2 we presented a model for hybrid encryption, built from the lower level
primitives KEM and DEM. In the following, we describe some security requirements
for the components in a KEM-DEM hybrid scheme that lead to proving it semantically
secure against adaptive adversaries.
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Definition 30 (KEM IND-CCA security) An adversary against a key encapsulation mech-
anismKEM in anadaptive chosen ciphertext attaska PPTalgorithm AXEM that takes
as input a security parametéf, and plays the following attack game:

1. The adversary querieskey generation oracleyhich computes
(pk, sk) < KEM.KeyGen(1)
and returnspk.

2. The adversary makes a sequence of calls de@yption oraclesubmitting en-
capsulationg” of its choice, to which the decryption oracle responds with

KEM.Dec(sk, C).

3. The adversary queries @amcryption oraclgwhich computes:
(Ko, C*) « KEM.Enc(pk); K, « {0, 1}/<EM KeyLen. 3 £ 1}
and returns the paif K, C*).

4. The adversary issues new calls to the decryption oracle, subject only to the re-
striction that a submitted ciphertekt # C*.

5. The adversary outputs € {0, 1}.

For a PPTadversaryAXt™ we define
Adv gkeu (0) := |Pr [AFM(1°) = 1|b = 0] — Pr [A"™M(1%) = 1|b =1]].

We say that &EM is secure against adaptive adversaiider all AXEM the function
Adv 4rem (€) is negligible ine.

There are several transformations for building se¢(&®1s from well-known cryp-
tographic primitives, as shown in [Den03], but these proofs usually use heuristic argu-
ments. There are few practiddEMs proven secure without heuristic reasonings, and
designing new ones is currently a challenging task. The following definitions deal with
the symmetric components in an KEM-DEM scheme.

Definition 31 (SKE passive security) An adversary against a symmetric schesieé
in a passive attacks a PPTalgorithm A5KE that takes as input a security parametéy
and plays the following attack game:
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1. The algorithm4SXE generates two distinct messages m, with the same length.
Next, it submitsny, m; to anencryption oracle

2. The encryption oracle generates a random/key lengthSKE.KeyLen(1¢), along
with a randomb € {0, 1}, and encrypts the message, using the key:. The
adversary is given the resulting ciphertext

3. The adversary outputé € {0, 1}.
For a PPTadversaryASKE we define
Adv gske (0) := |Pr [APE(1°) = 1[b=0] — Pr[A>F(19) =1|b=1]|.

We say that é&SKE is secure against passive adversaifésr all A¥E the function
Adv 4ske () is negligible inf.

Definition 32 (MA security) A one-message atta@ddversary against a message au-
thentication codaviA is a PPTalgorithm AMA that takes as input a security parameter
1¢, and plays the following attack game:

1. The algorithmAMA chooses a bit string”, and submits it to armuthentication
oracle.

2. This oracle generates a random keyof lengthM A. K ey Len, computes
MA.Eval(x',T)
and returns the correspondiny AC' value to the adversary.

3. The adversary outputs a li§tly, M ACY), ..., (T}, M AC})) of pairs of bit strings.

AMA hasproduced a forgeryf for somel < i < k, we haveM AC; # MAC and
MA.Eval(x', T;) = M AC;. For a PPTadversaryAM* we defineAdv 4ua (¢) as the prob-
ability that AMA produces a forgery in the above game. We say thitAais secure
against one-message attadifer all AM* the functionAdv 4wa (¢) is negligible in.

Definition 33 (DEM adaptive security) An adversary against a data encapsulation mech-
anismDEM in anadaptive attacks aPPTalgorithm APEM that takes as input a security
parameterl, and plays the following attack game:

1. The algorithmA4PEM generates two distinct messages m, with the same length.
Next, it submitsny, m; to anencryption oracle
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2. The encryption oracle generates a random kéyof length SKE.KeyLen(1¢),
along with a randomb € {0, 1}, and encrypts the message, using the key
K. The adversary is given the resulting ciphertext

3. The adversary makes a sequence of calls tieeryption oraclesubmitting ci-
phertexts: of its choice, to which the decryption oracle responds WM .Dec( K, c).

4. The adversary outputs € {0, 1}.

For a PPTadversaryAPEM we define
Adv goeu (0) := |Pr [APEM(1%) = 1|b = 0] — Pr[A°™M(1") = 1]b =1]|.

We say that @EM is secure against adaptive adversaifdsr all APEM the function
Adv 4oem (¢) is negligible inf.

Theorem 34 LetSKE be secure against passive attacks &8l be secure against one-
message attacks. Th&EM?2 is a data encapsulation mechanism secure against adap-
tive adversaries.

Proof: See Theorem 4 in [CS]. [

In contrast toKEMSs, the problem of designing secud&Ms is solved by the latter
theorem, since there are known ways to efficiently build sefuites andMAs using
well-known cryptographic techniques (cf. [CS, Sho04]).

Theorem 35 Let SKE be secure against passive attackéA be secure against one-
message attacks aiEM be secure against adaptive adversaries.DEM2 = (SKE, MA)
be the data encapsution mechanism obtained from Table 1.1.Hthen(KEM, DEM?2)

is semantically secure against adaptive adversaries.

Proof: See Theorem 5 in [CS]. [

With this result, building secure hybrid encryption schemes is reduced to designing
secure key encapsulation mechanisms.

1.3.3 Beyond the standard model
Random Oracle Model

The tools to design and analyze encryption schemes presented so far are known as
the standard modefor provable security. As explained in the introduction, design-

ing and proving secure practical asymmetric cryptosystems, as well as key encapsula-
tion mechanisms, has been shown to be quite a difficult task. With the exception of
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the works [CS98, CS02] by Cramer and Shoup, there has been little progress in this
area. For this reason, the idealised model of computation daldiom Oracle Model
(ROM) was proposed by Bellare and Rogaway in [BR93], in which giving security
proofs is far easier than in the standard model. This model is discussed in the sequel.

A random oraclecan be viewed as a special type of random process or random se-
guence. The random oracle is defined through an idealised functionality that is closely
related to the random oracle simulations often used in the proofs of security. The fol-
lowing definition states what it is meant in this work by a random oracle.

Definition 36 (Random oracle) Let A be a samplable set. random functiorG over A
is a sequence of uniformly distributed independent random variablestwedexed by
the elements of0, 1}*. Notice that{0, 1}* can be viewed as an ordered setrahdom
oracleover A is an oracle that answers queries exactly as if the random functias
evaluated.

The main property of a random function is that the joint distributiopso¥ariables
G(s) for distinct values ofs is the same regardless which valuessadire selected.
Thus, an efficient probabilistic algorithm can simulate this random function by means
of a table7; storing all previous queries along with their answers. Any new (still
unanswered) query will be answered with a “fresh” random value, which is then stored
in 7. Schematically,

G(s)
1 if s € Tg; return T(s); endif
2 g— A
3 insert(s, g) in tableZ;
4 returng

Then, in a security proof in the ROM, the adversary is given oracle access to one
or more random functions. This means it is giveblack-boxacces, i.e. it does not
evaluate the random function directly. In order to formalize internal random coins of
the random functions involved, a stép «— R(A) must be added for each random
function at the beginning of the attack game.

Since random functions have exponential size description, in real implementations
they have to be adequately replaced by function families with polynomial size descrip-
tion, cryptographic hash functions being the most popular choice. This concrete spec-
ification will be included in the public data available to all parties in a protocol (e.g.
the public key of an encryption scheme). The resulting gap between a random function
and the function actually implemented in the protocol implies that security proofs are
not completely meaningful but a heuristic argument. In fact, several works (for instance
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[CGH98, GTO03]) have found theoretical weaknesses in any real implementation of pro-
tocols proven secure in the ROM. However, these flaws are so contrived that they do not
affect protocols found in the literature. Research is currently being devoted to studying
the meaning of the ROM heuristic in protocols closer to real cryptographic uses, for
instance in [BBP04].

Side channel attacks

In complexity-theoretic cryptography, an adversary may attack a cryptographic algo-
rithm essentially only by exchanging messages with it. The adversary is given some
access to explicit inputs and/or outputs of the algorithm and is even given knowledge
of its internal code, except for the secret key. However, in the real world, computations
are physical processes, so an adversary may exploit the information leakage inherent to
the physical execution of an algorithm. Such attacks are commonly citleechannel
attacks. Since side-channel attacks are outside complexity-theoretic cryptography, its
security tools do not protect against such attacks. In fact, there have been found real-
istic powerful attacks against widely used complexity-theoretic cryptographic schemes
(eg. [Koc96, KJJ99]). The development of a theoretical framework including security
against physical attacks is currently a challenging task in the cryptographic community,
and initial steps have been taken in some works, such as [MR04,"®G4M In this

work we only make an indirect use of these ideas.

1.4 Trusted mathematical assumptions and con-
crete security

In complexity-theoretic cryptography protocols, security is in the last instance based
on the existence of some problems that are conjectured to be unsolvable in probabilis-
tic polynomial time. They are thatomic primitivesin designing any protocol. Some

of these primitives are derived from mathematical objects, some others arise from the
cryptographic practice. For instance, the hardness of factoring belongs to the former
category, while assuming that using a block cipher with a random seed produces a pseu-
dorandom sequence belongs to the latter.

In the sequel we will focus on number theoretic hard problems, all of them well-
known and recently proposed. It is also discussed why they are assumed to be hard,
showing the best algorithms known to attack them. This leads to present the study
of concrete security, which is a crucial step when evaluating the security of any cryp-
tographic protocol used in practice. This security estimation enables us to relate the
expected time for solving the underlying problems and the key size in the scheme.
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The hardness assumptions dealt with are divided into three groups, naorely,
putational, decisionabnd gap assumptions. Roughly speaking, a computational as-
sumption is related to the hardness of computing a solution of a problem. A decisional
problem is related to the hardness of deciding if an instance of a problem has solution,
but it is not required to find any solution. In gap problems, one tries to compute a solu-
tion of a problem with the help of an oracle that solves the related decisional problem.
In every case, the concept okaypair generatofsee Definition 14) will play a funda-
mental role in the description of these problems. Regarding its origin, the mathematical
assumptions used in this work can be divided into two different famifeetoringand
discrete logarithmbased assumptions. In the following, we assume the reader to be
familiar with arithmetic in rings and finite fields.

1.4.1 Factoring based assumptions

The schemes based on factoring use arithmeti&, irwheren is some composite num-
ber. In almost all cases the ability to factor the numbgalso callednodulus implies
the ability to solve the hard problem. The description of a factoring-based assump-
tion strongly depends on the probability distribution induced avéf x SK by the
keypair generator. Let us first define the key sets for most of the factoring-based prim-
itives studied in this work. We shall define two keypair sets, the first one, written as
PK™™C x SKFAC will be used forfactoring-likeschemes, and the second one, written
asPKRSA x SKRSA for RSA-likeschemes. Although most of the objects we will define
are treated as mathematical entities, they must be representable as bit strings to fit in our
definition of PPT algorithms. The representations proposed in [IEE9Q9] are valid for our
purposes.

Given a security parametéf, we denote byPRZMES(¢) the set of primes with
length/ in its binary representation, andn) = lem(p — 1,¢ — 1) whenn = pq. Such
integers are usually called RSA modulus. Then, on the one hand,

PK{* ={n|n=pq p,g € PRIMES(()} and
SK{AC ={(n,p,q) | p,qg € PRIMES({), n = pq};
while on the other hand,
PE;A ={(n,e) | n=pg; p,q € PRIMES(L), ged(e, A(n)) = 1}

and
RSA _ p.q € PRIMES(L), n = py,
SK™ = {(n, ¢:p: 4, ) ‘ ged(e, A(n)) =1, ed =1mod A(n) |-
Before describing the usual distributions over these sets, we first note that a distribution
over a factoring keypair set can be transformed into a distribution over a RSA keypair
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set, and vice versa. In the first direction, we should choose a suitalylé once the
values(n, p, q) are given; in the second direction, we simply take the valueg, q)
from the tuple(n, e, p, q, d). In the following, some distributions over these two keypair
sets are described, which will be denoted5§¢ when they are factoring-like, and by
IRSA in the RSA case. We simplify the notation by writing only the output ovéf,
since by definition there exists a PT algorithm that retrigyefrom sk. Moreover, in
this case this algorithm is completely trivial.

Definition 37 (Factoring-like distributions) The distributionsI[;S, IE0C | IR2S . over

PK™™C x SKFAC named aglassical, Blumand strong-primes factoring distributions
respectively, are defined as follows:

e IFAC on input a security parametar outputs(n, p, ¢) S.t.

clas

p,q — PRIMES(¢/2), n = pq.

e [ENC oninput a security parametér outputs(n, p, q) s.t.

Blum

p,q < PRIMES(¢/2), where p,q = 3mod4, n = pq.

e IFAC oninput a security parametér outputs(n, p, ¢) s.t.

strong

p,q — PRIMES(¢/2) wherep, q are strong primes, i.e.
p=2p +1andq = 2¢ + 1 with p, ¢ prime numbers and = pq.

There are several ways to implement algorithms with output close to the distributions
defined above. We refer to Annex A in [IEE99] for examples of standardized concrete
implementations.

Definition 38 (RSA-like distributions) The distributions/5>, IR and 153, over
PKRA x SKRSA named aglassical practicaland Blum RSA distributionsrespec-
tively, are defined as follows:

e [R5A oninput a security parametef outputs(n, p, g, e, d) S.t.

clas

p,q — PRIMES((/2), € < Zy@), ed = 1mod A(n).

° 1525 on input a security parameter outputs(n, p, ¢, e, d) S.t. e is chosen from a
given set of 'small’ prime integers, usually Fermat prird8s5, 7, 17, 257, 65537}.
Thenp, g < PRIMES(¢/2) s.t. ged(e,p — 1) = ged(e,q — 1) = 1, n = pg and

ed = 1mod A\(n).



24 CHAPTER 1. PRELIMINARIES

e Ifen has the same output thaf>2 except thap = ¢ = 3mod 4.

Blum

We point out that cryptographers using ttlassical RSA distributiom proving the
security of RSA-like schemes is a common situation, but they are actually thinking of
the practical RSA distributiorior the implementation step. Therefore, if their schemes
are used in practice, the security is in fact related to the practical version, although
unstated. From a theoretical point of vielf>" is preferable taX:2. In the first case,

the parameters, ¢ ande, d are chosen almost independently, while in the second case
the primes are restricted to thogeg such that the public exponentis coprime to

p — 1 andqg — 1, and then some randomness is lost with respect to the first option. In
contrast,IFfiECA is better for practical purposes, since using small size exponents leads to
very efficient encryptions. In fact, the RSA keypair generation algorithm proposed in
the standard [IEE99] uses the distributiff?. Both distributions will be considered
hereafter, but preference will be given ;gﬁiﬁ because of its significance in real life
implementations. Consequently, our approach is different from the usual expressions

found in the literature.

Computational factoring-based assumptions

Informally speaking, the general formulation of a computational factoring assumption
states that it is hard to factor the modulus, or to solve the RSA problem, induced by a
certain distribution over the corresponding keypair sets.

Assumption 39 (Factoring assumption)For everyPPTalgorithm A

Pr[A(1%,n) = (p,q) | (n,p,q) — Ifas (1)] € negl(¢).

where the probability is computed with respect to distributi§ff and the coin tosses
of A.

Assumption 40 (Factoring Blum-RSA assumption)For everyPPTalgorithm A
Pr[A(1°,n) = (p,q) | (n,p,q,e,d) — I5om(1°)] € negl(().

where the probability is computed with respect to distributi§ef; and the coin tosses
of A.

Assumption 41 (RSA assumption)For everyPPTalgorithm A

J4 _ (n7p7 q,€, d) — [fIaSsA(lz)
PrlA(1°,n,e,y) =x T Ty =2 € negl(?),
where the probability is computed with respect to distributi§f* and the coin tosses
of A.
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Assumption 42 (Practical RSA assumption)For everyPPTalgorithm A
(n,p, q,e,d) — IRA(1Y)

prac

E N
PriAllney) =z 00 e ) e

€ negl(?) .
where the probability is computed with respect to distributifff* and the coin tosses
of A.

Remark 43 In the same way, one would define Blam and strondgactoring assump-
tions using the distributiongih¢ and IFAC respectively.

lum strong

Decisional factoring-based assumptions

The following assumptions are described by means of a certain keypair distribution, but
it is possible to use any of the factoring-based distributions defined before. We have
chosen the most useful distributions in the rest of this work.

Assumption 44 (QR assumption) The probability distributionsD; ,,, D, ,, induced by
the following random variablex’,, X, overZ; are polynomially indistinguishable:

X, = (n,y) where (n,p,q) «— IFA°(1Y), 2 — Z*, y = 2> modn,

clas

Xy = (n,y) where (n,p,q) «— IFAS(1"), y — Z} st. (g) = 1.
n

clas
Where(;) is the Jacobi symbol. This assumption is call@ehdratic Residuosity (QR)
assumption.
Assumption 45 (BQR assumption) The probability distributionsD, ,,, D5 ,, induced
by the following random variableX, X, overZ: are polynomially indistinguishable:

FAC
Blum

X, = (n,y) where (n,p,q) «— IEC (19, y — Z7 s.t. <g> — 1.
n

X, = (n,y) where (n,p,q) — IENS (1%, 2 — Z7, y = 2 modn,

Where(;) is the Jacobi symbol. We call this assumptiglnom Quadratic Residuosity
(BQR) assumption.

Assumption 46 (D&R assumption) The probability distributions), ,,, D, ,, induced
by the following random variableX;, X, overZ:, are polynomially indistinguishable:
X, = (n,e,y) where (n,p,q,e d) — IFA1Y), 2 — Z*, y = z°modn?,

prac

Xy = (n,e,y) where (n,p,q,e,d) «— INA1Y), y — Z7,.

prac

This assumption is calleDecisional Smalk-Residues (D&R) assumption, and it was
first introduced iIfCGHNO1].
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Assumption 47 (DS2R assumption) The probability distribution, ,,, D, ,, induced
by the following random variableX¥,, X, over(@,: are polynomially indistinguishable:

X, = (n,e,y) where (n,p,q,e,d) — IS, (19, 2 Q,, y = z**modn?,

Xl - (n’ 67 y) Where <n7p’ Q7 67 d) — IBR|SL]¢]“]PraC(1€)’ y — QTL2 Y
where(@),, denotes the set of quadratic residues modulo an integefhis assumption
is calledDecisional Smalke-Residues (D3R) assumption, and it was first introduced
in [GMMVO02].

Gap factoring-based assumptions

Roughly speaking, the Gap-Rabin assumption states that no PPT algorithm can solve
the factoring problem, even with access to an oracle that solves the QR problem.

Assumption 48 (Gap-Rabin assumption)For everyPPTalgorithm A

PrA(1%n) = (p,q) | (n,p,q) — Icﬁ/:f(le)} € negl(?) .

even with access to an oracle that deterministically solve)tRegroblem, where the
probability is computed with respect to distributiéff and the coin tosses of.

1.4.2 Discrete logarithm based assumptions

Problems related to the discrete logarithm are usually phrased in terms of a cyclic group
G = (g) whereg has prime ordep. Usually, these groups are obtained by taking
a large enough prime-order subgroupRjf or a prime-order subgroup of an elliptic
curve defined oveF,. Technically, since all groups of prime order are isomorphic, the
hardness of the problem depends not upon the group itself but upon the representation of
the group. For example, the discrete logarithm problem is thought to be hard in elliptic
curve subgroups, but is definitely easy in the group of integers mgdulo

To describe the keypair sets of discrete logarithm problems we will use the notion
of group schemeA group scheme is a s& = {G,} of group descriptionsA group
description(G, G, g,p) € G, specifies a finite abelian group along with a prime-
order subgroupg/, a generatoy of GG and the ordep of (7, and there exists a polynomial
t € poly(¢) such that both the length of the strings representing the elemeahtid the
bit length ofp are bounded by(¢). Then, keypair sets for discrete logarithm schemes
in their most basic and usual version are

PKF ={(G,G,9,p,h) | (G.G.9,p) € Ge, h € G} and
SKZG = {(gaG7g7p7 h,U) | (g7G7g7p) € Gf? h e G’ u € ZZ s.t. h= gu}
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More generally, the elements IRKS are of the form(G, G, g,p, hi, ..., ), where
hi,...,h; € G;while the elements i5 K& have the form

(g7Gvgvp7 hlv S 7hl7u17 cee aul)a
whereu,, ..., w € Z, andu; = log, h;. However, intractability assumptions will be

stated in terms of the basic version. We will present in the sequel two examples of
cryptographic group schemes: finite fields and elliptic curves. After that, some usual
distributions over these sets are described. For notational purgégedenotes the
cardinality of a group-.

Discrete logarithm groups and distributions

Definition 49 (Finite field groups) A finite field group schem&F = {FF,} consists
of the following group descriptions:

e G is afinite fieldF, with |¢| = ¢.

e (7 is a cyclic subgroup off with prime orderp.
e g is a generator of5.

e ucZyandh =g"€G.

Before describing elliptic curve group schemes, we recall some basic facts about
elliptic curves that must be known in order to understand the rest of this section. There
are nice introductions to elliptic curves from a cryptographic point of view, for instance
[Men93, BSS99], while a standard reference with a mathematical treatment is [Sil86].

Assume thatf, has characteristic greater than 3. Aliptic curve £/ overF, is
defined by an equatiog? = z3 + ax + b, wherea, b € F, andda® + 27b # 0. For finite
fields with characteristic 2 or 3, the equation defining an elliptic curve takes different
forms [Men93]. Thegroup of pointsof an elliptic curveF is the set of all solutions
(z,y) € F, x F,, whereF, is the algebraic closure @,, together with a special point
O calledthe point at infinity F is an abelian group with the poird® acting as its
identity element, and it is often written with additive notation. The addition formulas
for characteristic greater than 3 are as follows:Het (z,y) € E, then—P = (z, —y).

If Q= (x2,12) € E,Q # —P,thenP + Q) = (x3,y3), where

$3=>\2—CC1—513'2, 3/3:)\(961—563)—3/17
and
Y2 — U1 ifP;AQ

To — X1

2
3951% itP = Q.
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The group ofF, rational pointsof £, denoted by®(FF,), consists of the points i&y
having both coordinates i, plus the pointD, and it is also an abelian group. A well-
known theorem of Hasse states that the cardinaliy(@f,) is | E(F,)| = ¢+1—t, where
—2,/q <t < 2,/q. The curveFE is said to besupersingularif t2 = 0,q,2q,3q,4q;
otherwise the curve ison-supersingular A result by Waterhouse [Wat69] states that
if ¢ is a prime, then for eachsatisfying—2,/q < t < 2,/q there exists at least one
elliptic curve E overF, with |E(F,)| = ¢ + 1 — t. There exists a similar result when
is a power of 2. We can now state the definition of an elliptic curve group scheme.

Definition 50 (Elliptic curve groups) An elliptic curve group schemBC = {EC,}
consists of the following group descriptions:

G is the group off, rational points of an elliptic curvér defined oveft,.

G is a cyclic subroup off with prime orderp such thatp| = ¢.

P is a generator of7.

u € Zyand@ = uP € G.

We point out a difference in the definition of finite field and elliptic curve group descrip-
tions: in the former the security parameter sets the binary length representation of the
elements in the grou@, while in the latter/ sets the bits length of the cardinality of the
subgroup’. This difference will be explained when we study the computational effort
to solve discrete logarithms in each group.

Regarding the finite field case, we consider two possible distributions: in the first
place, a distribution that samples finite fielélswith ¢ of any form. In the second place,
a distribution only considering, for strong primeg. Although we do not use these dis-
tributions in this work, we have decided to put them here for the sake of completeness.
As in the factoring case, only the output oK ¥ is written.

Definition 51 (Finite field distributions) The distributiond®F and/EE overPKFF x

clas strong
SKFF named aglassicaland strong-primes finite field distributionsespectively, are
defined as follows:

e I¥F on input a security parameter’ outputs(F,, G, g,p, h,u) wherep,q «
PRIMES(¢) s.t.q = 1mod p, g < F, generates @ order subgroup, u « Zj
andh = g* € G.

o IF¥ . ONinput a security parameter’ outputs(F,, G, g, p, h,u) such thaty —

PRIMES () is a strong prime, i.eq = 2p + 1, G is the set of quadratic residues
modulog, g < G'is a generator ofy, u « Z; andh = g* € G.
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The algorithms described in Annexes A.16.1 and A.16.3 in [IEE99] have outputs that fit
into the distribution/EE.

With respect to elliptic curve group distributions, there are a number of ways to
generate elliptic curve group descriptions. These include:

e Selecting an appropriate finite field,. Then randomly select an elliptic curve
over the field (that is, randomly chosing the coeficients in its defining equation),
count the number of points on the curve using Schoof’s algorithm [Sch95], check
whether the number of pointsis nearly prime with|p| > ¢, and repeat until
appropriate parameters are found.

e Selecting an appropriate fielg,, then select an appropriate group orgeand
generate a curve over the field with this number of points using techniques based
on complex multiplicatiodAM93, LZ94].

e Selecting an elliptic curve from a special family of curves holding special proper-
ties (whose order is easily computable, with bilinear maps, etc.).

The first method, known asndomly generation of elliptic curve domain parame-
ters is the most conservative choice because it offers a probabilistic guarantee against
future attacks exploiting special properties. However, existing implementations of the
point counting algorithm by Schoof are less efficient than implementations of the other
parameter selection methods. The second method, knowomaplex multiplication
generation of elliptic curve domain parametegenerates parameters more efficiently
than the first method. The third method, knowngaserating elliptic curve domain
parameters from a special famjlgenerates elliptic curve groups with particular prop-
erties, which may be efficient generation and efficient group operations, as in the Stan-
dards for Efficient Cryptography [Cer00a], or the existence of additional mathematical
objects, such as the Weil and Tate pairings for cryptographic purposes [Jou02]. How-
ever, despite their efficiency or special properties benefits, the second and third methods
should be used with some caution because they produce parameters which may be sus-
ceptible to future special-purpose attacks. In the next definition we introduce distribu-
tions associated with the first and second generation methods. As usual, only the output
over S KEC is written.

Definition 52 (Elliptic curve distributions) The distributiond £, and IEG over P KFC x

SKEC, named agandomand complex multiplication elliptic curve distributionse-
spectively, are defined as follows:

e 7EC on input a security parametel‘ outputs(E, G, P,p,Q,u) where E is an
elliptic curve ovell,, p is a prime s.t|p| > ¢, P — E(F,) generates the order
subgroupG, u < Z, and@ = uP € G. These parameters are obtained by the

random generation method.
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e IES on input a security parametel® outputs(E, G, P, p, Q,u) where E is an
elliptic curve overl,, p is a prime s.t|p| > ¢, P — E(F,) generates the order
subgroupG, u « Z; and@ = uP € G. These parameters are obtained by the
complex multiplication generation method.

Standardized algorithms for distributid$, can be found in [X9.99, X9.01], while for
IES can be found in [IEE99]. Concrete elliptic curve group descriptions with distribu-
tion 7EC, and with Koblitz curves [Kob92] are suggested in [Cer00b].

rand

Computational discrete logarithm based assumptions

Informally speaking, the general formulation of a computational discrete logarithm as-
sumption states that it is hard to solve the discrete logarithm or the Computational
Diffie-Hellman problem, induced by a certain distribution over finite field or elliptic
curve keypair sets. In the subsequent definitions, all probabilities are computed with
respect to a distributioh® and the coin tosses of a PPT algorittin

Assumption 53 (DL assumptions)For everyPPTalgorithm A
Pr[A(1%,G.G,g,p,h) =u| (G, G, g,p, h,u) — I5(1)] € negl(¢).

Itis calledDiscrete Logarithm (DLassumption ifs = FF, andElliptic Curve Discrete
Logarithm (ECDL)assumption ilG = EC.

Assumption 54 (CDH assumptions)For everyPPTalgorithm A
PrA(1,G.G.g.p,9",9°) = g" | (G.G.g,p, h,u) «— I¥(1"), v ZI] € negl(().

It is called Computational Diffie-Hellman (CDHassumption ilG = FF, andElliptic
Curve Computational Diffie Hellman (ECDHpsumption il = EC.

Decisional discrete logarithm based assumptions

Assumption 55 (DDH assumptions)The probability distributionsD, ,, D5, induced
by the following random variableX, X, are polynomially indistinguishable:

X1 = (G,G.9,p,9".¢",9*) where (G,G,g,p,h,u) — I9(1), v — Z?
X, = (G,G.9,p,9"¢",9") where (G,G,g,p,h,u) — I9(1), v,w — Z},

This assumption is calleBecisional Diffie-Hellman (DDH)assumption ilG = FF,
andElliptic Curve Decisional Diffie Hellman (ECDDHyssumption ilG = EC.



1.4. ASSUMPTIONS AND CONCRETE SECURITY 31

Gap assumptions

Assumption 56 (Gap-CDH assumption)For everyPPTalgorithm 4
PrA(1,G.G.g.p,9",9°) = g*" | (G.G.g,p, h,u) — I¥(1"), v ZI] € negl(().

even with access to an oracle that deterministically solve®tE problem inG. This
assumption is calle@ap-CDHassumption ilG = FF, andGap-ECDHassumption if
G =EC.

1.4.3 Hardness of factoring and discrete logarithm prob-
lems

The problems on which the security of our schemes is based have been already formal-
ized. They areonjecturedo be unsolvable by PPT algorithms, and it is not known how

to prove that these problems are actually hard. Indeed, this issue is related to one of
the most famous open problems in complexity theory and mathematics, name# if P
NP (cf. [Gol01]). The best we can do is to estimate the hardness of these problems by
studying the computational complexity of the fastest attacks known against them.

Attacks against factoring and RSA problems

The fastest factoring algorithm published today is the General Number Field Sieve
(NFS), a variation of the original algorithm invented by John Pollard in 1988. NFS
can handle numbers of arbitrary form, including RSA moduli. On heuristic grounds the
NFS can be expected to require time proportional to

L[n] == (1:9229+0(1)) In'/3 1 1n%/3 (In n)

to factor an RSA modulus, where they(1) term goes to zero asgoes to infinity. This
run time is calledubexponentiah the input size: because as goes to infinity it is less
thann® for any constant > 0. The storage requirements of the NFS are proportional
to \/L[n].

With respect to solving RSA, the best known way to attack it, except for some par-
ticular cases (see [Bon99]), is to factor the modutysso it is usual to assume that
solving RSA requires roughly the same computational effort as factoring the modulus.
Nevertheless, there is evidence that breaking RSA cannot be equivalent to factoring, as
shown in [BV98].

Regarding decisional QR assumptions, the only way known to solve them is an-
swering the related computational problem, that is, computing square roots modulo
But this problem is equivalent to factoring, so for practical purposes the computational
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complexity of QR problems is set to be similar to factoringHowever, since there is
no known reduction from factoring to solving QR, it is reasonable to trust the hardness
of the Gap-Rabin problem, but this problem has still not been studied in depth.

In the case of DSeR and DS2eR assumptions, the fastest attack known is to solve
its computational version, that is, we answer these problems by finding a solution of the
equationst® = cmodn? with ¢ € Z*,, or 2?* = cmod n?, with ¢ € Q,,2 respectively.

So we are confronted with the problem of finding small solutions of low degree polyno-
mials. The best option is to apply the following result due to Coppersmith [Cop96]:

Theorem 57 Let N be an integer and lef(x) € Zx|x] be a monic polynomial of degree
d. Then there is an efficient algorithm to find alf € Z such thatf(zy) = 0 mod N
and|z,| < N4,

In our case, given the equations= z° mod n? or ¢ = z** mod n?, we must find a
rootx < n. Coppersmith’s result ensures this is efficiently computable (i.e. in polyno-
mial time) for all|z| < n?/¢ and|z| < n?/?¢ = n'/° respectively. For all valuesgreater
than this bound, there is at present no polynomial algorithm solving this problem when
the factorization of: is unknown, despite much research in this topic (for instance in
[HG99, BD99, BDHG99, HGO1]). Then for any > 5 ande > 3, respectively, the
assumptions seem to be valid, with hardness depending on the size of the exponent

Attacks against discrete logarithm problems

The discrete logarithm related to a group description G, ¢, p) can be solved by com-
puting discrete logarithms i, or in the subgroug-. In the first case, the best algorithm
known is a variation of NFS, referred as DLNFS, which finds a discrete logaritfifn in

in expected time proportional tb[p]. Furthermore, the subgroup discrete logarithm
can also be attacked by Pollarg'snethod [Pol78]. This method can be applied to any
group, as long as the group elements allow a unique representation, and the group law
can be applied efficiently, which is the case. The expected running time of Pollard’s
p method is exponential in the size gf namely1.25, /g multiplications inlF,, and its
storage requirements are very small. Then, solving DL requires subexponential time in
|g| and exponential time ifp|, and thernp| can be much smaller thaq|.

In the case of CDH, itis widely believed that it is equivalent to DL. Maurer and Wolf
have shown in several works explicit reductions from DL to CDH for many groups, as
can be seenin their survey [MWOO]. Another point supporting this claim is that no group
for which CDH problem is substantially easier than DL problem has been exhibited up
to now. However there are still many groups for which this equivalence is still not
proven. For these reasons, CDH and DL are assumed to have similar complexity.
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The DDH problem appears to be easier than the CDH problem in general. For
instance, consider a subgroapwith order|G| = 2p wherep is a large prime, and
for which CDH is hard. Then, with probability/4, the correct DDH tuple can be
recognized. The reason is that frgth one can determinemod 2 by computing(g®)?
(see [MWOO] for more details). Generally, the CDH problem can be hard in a group
if |G| containsat least one larggrime factor, whereas the DDH problem can only be
hard if |G| is free of small prime factorsThere is no known reduction from CDH to
DDH but, as in the previous cases, they are assumed to have the same computational
complexity provided that DDH is believed hard to solve.

Attacks against elliptic curve discrete logarithm problems

The best algorithm to date for solving the ECDL problem related to a group description
(E,G, P,p), is an improved version of the Pollarmethod, which takes aboytrp/2
elliptic curve additions. Thus, solving ECDL requires time exponentigbfinFor this
reason ECDL-based schemes need smaller key sizes than factoring, RSA and DL based
schemes for the same level of security.

However, care must be taken when dealing with special families of elliptic curves.
Indeed there exist certain elliptic curves where it is possible to solve ECDL in subexpo-
nential time and even in polynomial time: supersingular and anomalous curves. An
elliptic curve E over F, is said to beprime-field-anomalousf |E(F,)| = ¢. Se-
maev [Sem98], Smart [Sma99] and Satoh and Araki [SA98] independently showed
how to compute efficiently an isomorphism betwde(¥,), whereE is a prime-field-
anomalous curve, and the additive grougef This gives a PT algorithm for ECDL in
E(F,). The attack does not appear to extend to any other class of elliptic curves. Such
curves are then useless for cryptographic purposes.

Menezes, Okamoto and Vanstone [MOV93] used the Weil pairing on an elliptic
curve E' to embed the group(F,) in the multiplicative group of the field ,» for some
integerk, called theembedding degree€This reduces ECDL it (F,) to DL in . A
necessary condition far to be embedded iﬁ;k is thatp dividesg® — 1. Now in F;k we
can use the DLNFS method with subexponential running firigé]. For the case when
q is a power of 2 or whep is prime andk = 1, there exist algorithms computing DL
with that computational complexity. No algorithm with running timé;*] is known
wheng is odd andk > 1, but we adopt the supposition that this time estimate is the
complexity of the discrete logarithm problem]lnj;k for all g andk > 1, as suggested in
[KMV00].

Note thatk must be less thalog? ¢, since otherwise the DLNFS algorithm ngk
will take exponential time irjg|. This is the case of supersingular curves, which are
known to havek < 6. For these curves, the MOV reduction gives a subexponential-
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time algorithm for the ECDL. In contrast, for most randomly generated elliptic curves
(for instance, with distributiongES, or I£S) it turns out thatt > log® ¢, SO MOV
reduction does not threaten the security of ECDL in this case.

In order to prevent MOV reduction attacks, a good cryptographic practice when
selecting an elliptic curve is to check thatloes not divide/* — 1 foranyl < k < C,
which implies that the embedding degree is greater thaithis checking is done, for
instance, in [IEE99, X9.99], and settirig= 20 is considered enough. Despite this,
curves with relatively small embedding degreefor example6 < k£ < 20 are being
considered for cryptographic applications using efficiently computable non-degenerate
bilinear maps [Jou00, DBSO04]. In this case, one must guarantee the infeasibility of
ECDL and DL inG andIF;k respectively.

With respect to ECDH and ECDL, the situation is similar to the finite field case.
There is even more evidence about the hardness of ECDH, since Boneh and Lipton
proved in [BL96] that if ECDL cannot be solved in subexponential time, then neither
can ECDH.

Things are quite different for ECDDH. It has been recently published [JNO3] that
the hardness of ECDDH is a much stronger hypothesis than the hardness of the regular
CDH problem, describing reasonably looking cryptographic groups where ECDDH is
easy while ECDH is presumably hard. These groups are derived from the special fam-
ily of elliptic curves with bilinear maps. In contrast, ECDDH is believed to be hard
over randomly generated elliptic curves, where as usual it is assumed that ECDDH and
ECDL have similar complexity, even though no reduction has actually been presented.

1.4.4 Concrete security

As explained in the introduction, security proving works via a reduction: if we were
able to defeat a particular security level in an encryption scheme, then we would be able
to solve a conjectured unsolvable mathematical problem. But these equivalences hold
asymptotically, that is, they guarantee that for a sufficiently large security paratheter
we would have a low probability(¢) when trying to break the protocol. However, when

a cryptographic scheme is used in practice, a fixed vgléer the security parameter is
used, so we would have tuantifythe security for this particular value. This is the idea
behind concrete security.

At first glance, one must consider the computational effort that the fastest known
method needs to invest to solve a particular hard problem with a concrete security pa-
rameter. Since this information has been provided in the previous section, one could try
to derive particular values for the security parameter from these theoretical estimates.
However, this approximation is still incomplete, since a theoretically feasible attack
could be impractical or even infeasible in the real world, because of its memory storage
requirements or the resources needed to design a machine efficiently implementing it.
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The most satisfactory work dealing with this problem is [LVO1] by Lenstra and Verheul.
They take into account not only cryptanalysis matters, but also the expected change in
computational resources available to attackers and its relation with the life span of the
key; economic considerations, etc.

To be consistent with the time units commonly used in the literature, we use the
sentence problemP has a2 security levelo say that an attacker agairfdt running
in time less thare! 3-DES encryptior’s has a “negligible” success probability. In Ta-
ble 1.2 we present some of the results obtained by Lenstra and Verheul. They must be
read in the following way: the first line in the table means that until the year 2012 a
computational effort equivalent #*° 3-DES encryptions is assumed to be infeasible;
and that either factoring an RSA modulus with bit-length in the interval [1120,1464],
or computing the DL in a [1120,1464] bit-length finite field along with a 139 bit-length
subgroup, or solving ECDL in a elliptic curve subgroup with a length between 149 and
165 bits, requires a computational effort equivalerit®b3-DES encryptions. We stress
that this in indeed the current demmanded security level.

Year | Symmetric | Asymmetric key size | FF subgroup | Elliptic curve
key size and field size size key size
2012 80 [1120,1464] 139 [149,165]
2026 90 1792,2236 160 170,205
2040 101 2656,3214 179 191,244
2050 109 [3392,4047] 193 [206,272]

Table 1.2: Cryptographic key sizes

Another issue of interest for the study of concrete security is the efficiency of a
reduction. This is defined as the relationship betweeatactkerwho breaks the cryp-
tosystem with probability at leastin time ¢, doing less thamp calls to a decryption
oracle, and less thagy; calls to an oracle for a hash function; and the impli€d:’)
solveragainst the corresponding trusted cryptographic assumption. Such an attacker is
referred to as &t, ¢, ¢p, q) attacker for short. Then, the security reductiotight if
2—’/ ~ L, andnot tightif 2— > gpt. Itis also stated that a schemeviry tightif ¢ ~ ¢’
andt’ is equal tot plus a linear quantity in the number of oracle calls. The tighter the
reduction is, the smaller the gap between the computational efforts needed to break the
scheme and to solve the underlying problem. This has a great impact on the efficiency
of the scheme, since a tight security reduction allows us to use smaller security parame-
ters. For instance, if the security reduction to factoring of some cryptographic protocol
is very tight, then the use of a 1464-bit length RSA modulus makes the protocol secure
against adversaries with running time bounde@y3-DES encryptions. In contrast, if

23-DES is a very popular symmetric encryption scheme.
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the reduction is not tight, the key length must be notably increased. This is the case for
the RSA-OAEP scheme reduction in [FOPSO01], in whick: ¢ + ¢% - ¢3 ande’ ~ &2,

and then an RSA modulus with more than 4000-bit long is needed to attain the same
security level [P0i02].



Chapter 2

Semantically Secure Encryption
Schemes against Passive
Adversaries

In this chapter, new schemes with semantic security against passive adversaries in the
standard model are presented and analysed. Both schemes base their security on factor-
ing related hard problems and have a fast encryption.

2.1 Rabin-Paillier Encryption Scheme

Designing practicalND-CCA schemes in the standard model is quite a difficult task.
The most appealing approach used up to now is found in [CS98] and [CS02]. In this set-
ting, the security of the proposédD-CCA schemes is only based on nhumber-theoretic
decisional assumptions. The technique used in [CS98] and [CS02] is to improve exist-
ing IND-CPA schemes under appropiate and widely accepted decisional assumptions,
obtainingIND-CCA schemes based on the same assumptions and without significantly
degrading their efficiency. There exist three different realizations in this setting, which
are based on the Decisional Diffie-Hellman, Decision Composite Residuosity [Pai99]
and the classical Quadratic Residuosity assumptions respectively. It would be of great
interest to construdND-CCA schemes from the RSA and Rabin-Williams primitives

in this model. A decisional assumption’s candidate for the RSA scheme was proposed
in the modification of Paillier scheme [CGHNO1], and the proof of the equivalence be-
tween the one-wayness of this scheme and the RSA scheme was presented shortly after
in [CNS02]. The validity of this new assumption deserves further study and developing
anIND-CCA scheme from it remains an open problem. As far as we know, no decisional
number-theoretic problem for the Rabin-Williams primitive has been proposed.

37



38 CHAPTER 2. PASSIVE SEMANTIC SECURITY

Our results

In first place, we construct a new trapdoor permutation based on factoring, which has in-
terest on its own. Trapdoor permutations play an important role in cryptography. Many
theoretic schemes use this object as a building block, in such a way that any trapdoor
permutation can be easily transformed ilN®-CCA ciphering (although very impracti-

cal), signature, or authentication schemes, for instance. Despite this fact, few candidate
trapdoor permutations are known, and fewer that are as secure as factoring (cf. [PG97]).
The new trapdoor permutation is obtained from a modification of RSA-Palillier’s trap-
door permutation [CGHNO1], which is reminiscent from the modifications applied by
Rabin [Rab79] and Williams [Wil80] to RSA cryptosystem. Then, using this new
function as a primitive, we design a new cryptosystem which is one-way under the
Blum-RSA factoring assumption, ahdD-CPA under the Decisional Smalé-Residues
(DS2eR) assumption. We call iRabin-Paillier scheme. We summarize hereafter the
main features of the proposed scheme:

e We take profit of the nice characteristics of Rabin schemes and overcome their
drawbacks, by using the Rabin-Williams function to hide the randomness. More
precisely, the encryption of a messages 7Z,, with randomness € @), is defined
asE(r,m) = r** + mnmod n?, wheree is an integer of small size.

e Itis remarkable that the scheme allows to encrypt arbitrary messages with a very
simple procedure, that does not depend further on the form of the message to be
enciphered, which was the case for the previous Rabin based schemes. Besides,
the efficiency is similar to that of plain RSA.

e The scheme iSND-CPA under the Decisional Small 2e-Residues assumption
(DS2¢eR).

Although the scheme is obtained by a simple modification of the RSA-Paillier sch-
eme, this modification deeply influences the underlying mathematical structure. This
was in turn the case of RSA-Paillier scheme with respect to the original Paillier scheme
[Pai99]. The main difference is that the one-wayness of the new scheme is equivalent
to factoring, and independent of the size of the exponefitis is also the case for the
Rabin-Williams primitive, a fact that has raised some doubt on the usefulness of taking
e > 1. We show that using such an exponent value is meaningful since its size plays a
crucial role in the hardness of our new decisional assumption. We are not aware of any
previous result showing an utility fer > 1 in Rabin-Williams function.

We can compare our scheme with the Okamoto-Uchiyama’s scheme (OU) [OU98],
which we briefly recall in the following. For a security parameitgrthe public key is
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(n,g,h, (), wheren = p*>q with p,q <« PRIMES({); g € Z7 is such that the order
of g~ 1in Ly, is p, andh = g" mod n. Then, the encryption function takes a message
0 < m < 27!, randomness « Z, and computes the cipherte&t = g™h" mod n.
Finally, the decryption algorithm computes

L(CP ' mod p?) r—1
m = L(gTmod p?) modp, where L(x)= P

The one-wayness of OU is equivalent to factoring= p*q, whereas in our case is
equivalent to factoring = pq, which is the classical factoring assumption. Our scheme
is drastically more efficient in ciphering, since OU presents an encryption cost propor-
tional to the lenght of the modulus. For instance, an exponent value= 17 can

be safely used in our scheme, and then only 6 multiplications madulre needed

to encryptm € Z,. Besides, our scheme presents an expansion factor 2, while OU’s
expansion factor is 3. However, OU scheme is homomorphic, and more efficient in
decryption than ours.

It makes also sense to compare our scheme with the efficient Blum-Goldwasser
(BG) IND-CPA scheme [BGB85]. Its semantic security is based on the Blum factoring
assumption, that is, a computational assumption. Roughly one hundred squares modulo
n are needed to encrypt € Z, and the expansion factor is 2 (see Section 8.7.2 in
[MvOV97]). Its decryption time is similar to RSA. Thus, our scheme is roughly ten
times faster in encryption than BG scheme while presenting the same expansion factor,
but 2 times slower in decryption.

The main drawback of our scheme is that, as well as in the previous schemes with
one-wayness equivalent to factoring, there exist a chosen ciphertext attack that com-
pletely breaks the scheme. It remains an open problem to further study the validity of
the DReR assumption and to modify our scheme to achiéi®-CCA security under
the D2e¢eR assumption in the standard model.

2.1.1 Some previous schemes and related trapdoor permu-
tations

In this section, we briefly recall some previous schemes and related trapdoor permu-
tations, from which we will derive the new trapdoor permutation based on factoring,
and the scheme we propose. We denotRBW [n, ¢| the RSA function with public
exponent, i.e. RSA[n, e|(z) = 2°modn, z € Z.
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Rabin function

Let p, ¢ be two different primes with equal length,= pq. Rabin proposed in [Rab79]
a provably secure cryptosystem based on the modular squaring function

x — z’modn.

It is well known that modular squaring is a trapdoor one-way function assuming that
factorisation of large numbers is infeasible. However, modular squaring is a 4 to 1
function, so a ciphertext is not uniquely decrypted. In order to avoid this drawback and
to speed up the decryption algorithm (i.e. the computation of square roots maggulo
the following proposal by Blum and Williams can be considered:

Blum-Williams function

Let p, ¢ be (different) primes with equal length= ¢ = 3mod 4, n = pq. The squaring
function restricted t@),,, i.e.

Gn:@Qn — Qn

r — 2’modn

is a trapdoor one-way permutation if factoring large numbers is infeasible. Then, if we
restrict the set of messages@y, a ciphertext will be uniquely decrypted. However,
this is not suitable for real applications, since it does not allow to encrypt arbitrary
messages. To decrypte @, one has to computg, *(c), i.e. the element € Q,

such thats? = cmod n. Let us briefly recall how to make this computation (see [Til99]

for a nice account on this). Assume that we know the factorisation ﬁfpcl] where

p = q = 3mod 4. We first compute the numbeys= ¢ = mod p andg = ¢+ modg,

which are the square roots efmodulop and modulog that are quadratic residues to
their respective modulus. Then, by using the Chinese Remainder Theorem, we obtain
ans € @,, such that? = cmodn.

Rabin-Williams function

Let p, ¢ be (different) primes with equal length, = ¢ = 3mod4, n = pq ande
a public RSA exponent (i.e. an integer such that(e, ( )) = 1, where\ denotes
Carmichael’s function). The map

We:Qn — @n

r — x*modn
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is also a trapdoor one-way permutation, assuming that factoring large numbers is infea-
sible, since a perfect reduction to the Blum-Williams function inversion problem can be
done as follows. Givem = G,(z) = z?modn, z can be retrieved from® modn =
2%¢mod n by inverting the Rabin-Williams function with some non-negligible probabil-

ity.

RSA-Paillier function

Catalano et al. proposed in [CGHNO1] a mix of Paillier's scheme [Pai99] with RSA
scheme, in order to obtain dND-CPA cryptosystem in the standard model with effi-
ciency similar to that of RSA cryptosystem. It is based on the permutation

Ee Ly X Ly — Ly
(r,m) +— 7°(1+mn)modn?

wherep, ¢ are distinct primes with the same length,= pq, ande € Z, is such
thatged(e, A(n?)) = 1. The encryption schem& (r, m) with randomness € Z: is
semantically secure under the Decisional Smdtlesidues assumption.

Sakurai and Takagi claimed in [ST02] that deciphering RSA-Paillier scheme with
public exponent is actually equivalent to inverting the original R§Ae| function.
However, Catalano, Nguyen and Stern found a flaw in the proof by Takagi and Sakurai,
and they proposed in [CNS02] an alternative proof of the claim in [ST02]. Therefore,
RSA-Paillier scheme is a practical semantically secure RSA-type scheme in the standard
model.

2.1.2 New trapdoor permutation based on factoring

In this section we present a new length-preserving trapdoor permutation based on fac-
toring, i.e. a length-preserving bijection that is one-way assuming that factoring large
integers is hard. It is worthwhile to remark that as well as ours, all previous trapdoor
permutations provably secure are based on the factoring problem [PG97]. In this con-
text, we say a cryptographic scheme is provably secure if it is proven to be as secure as
the underlying primitive problems (i.e., discrete logarithm or factoring problems). To
the best of our knowledge, only two length-preserving provably secure trapdoor per-
mutations exist, namely, the Rabin-Williams permutation, and another one proposed by
Gong and Harn in [GH99].

A new trapdoor permutation
Let (n,p,q, e, d) «— IZ>A (1°) for some security parametef, and

Blum

fe:QnXZn — Qn2
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(r,m) —— 7*+mnmodn?®.
Proposition 58 F, is a well-defined length-preserving bijection.

Proof: From the Hensel-lifting, the set of quadratic residues moddlean be alter-
natively defined a€),: = {x +yn | = € Q,,y € Z,}. Thenifc = F.(r,m) =
r%¢ + mnmodn?, withr € Q,,, m € Z,, itis obvious that modn = r** modn € Q,,
which implies thatF., is well-defined.

To prove thatF. is bijective it suffices to show that it is injective, because, from
the alternative definition of),>, we deduce that the sef®, x Z, and(@,> have the
same number of elements. Let us supposeéty, mg) = F.(ry,mi). Thenrd® =
r?¢ mod n, and since squaring and computirth powers module, with gcd(e, A(n)) =
1, are bijections over),, we conclude that, = r;modn. This impliesmon =
myn mod n?, SOmy = m; modn.

Finally, . is length-preserving, since the natural bit representation of an arbitrary
element either i), x Z,, or in Q,,2 has lengti2[log, n]. n

In the sequel we prove that invertifg is as difficult as factoring the modulus

Assumption 59 G,, is Trapdoor One-Wawith respect to the keypair generat@p K 54,
SKRSAIRSA Y “that is, for everyPPTalgorithm A,

Blum

PrA(1Y,n,c) =71 | (n,p,q e d) « I§n, r— Qn, c=r>modn| € negl(¢).
Proposition 60 G, is TOW if and only if theBlum-RSA factoringassumption holds.

Proof:

(=) Let us suppose that the Blum-RSA factoring assumption does not hold. Then
there exists &PT algorithm that factors: = pq with a non-negligible probability.
Givenc € @), and knowingp andg, computer,, = x = modp andz, = x = mod q.

Then, using the Chinese Remainder Theorems Z: is obtained such that? =
cmodn andz € Q,, with probabilitye.

(<) Let us assume that, is not TOW. Then, there existsRPT algorithm .4 such
that givenc < Q,, returnsz € @Q,,, such that:? = cmod n, with probabilitys. We first
randomly choose € Z: such that(£) = —1, and compute: = z° mod n, which is
uniformly distributed inQ,,. Let A(n, c¢) = = € Q,,. We claim thagcd(n,z—z) = por
g. Notice thatz satisfies (I){(3) = L and() = —1} or (Il) {() = —1and({) = 1}.
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Since(%) = (£) = 1, and(5}) = (3}) = —1, thenin case (If = zmodp and
T = —xrmodgq, while in (II) z = —xrmodp andz = xmodq. Therefore the claim
holds, andh is factored with probability. [

Assumption 61 F, is TOW with respect to the keypair generat¢P KA S KRSA
I&SA ) that is, for everyPPTalgorithm A,

Blum

(n7p7Q7 evd) — [glsuﬁﬁ
re Qu m T, ¢ = F(r,m) € negl(?).

Pr |A(1¢ n, e, c) = (r,m)
Proposition 62 F, is aTOW permutation with respect to the keypair genergtBix >4,
SKRSAIRSA ) 'if and only if theBlum-RSA factoringassumption holds.

Proof:

(=) Let us suppose that the Blum-RSA factoring assumption does not hold. Then
there exists a polynomial time algorithm that factoers: pq with a non-negligible prob-
ability e. Knowing p and g, one can computé € Z! s.t. de = 1mod \(n), since
ged(e, AM(n)) = 1. For anyc € Q,» we can also compute = G, '(c?modn) =
G '(r* modn), andm € Z, from the equalitynn = ¢ — 7?* mod n*. These values are
such thatF.(r,m) = ¢, so we can inverfF, onc « @Q,2 with non-negligible success
probability e, which implies thatF, is not one-way.

(«=) Let us suppose thdk, is not one-way. Recall thatis a prime Fermat num-
ber (or has been chosen from some particular known set) angdf@at A(n)) = 1.
The goal is to show thatRPTalgorithm that invertsF, on a random input can be trans-
formed into another algorithm that inverts Blum-Williams permutatignAssume then
we are given a security parameléy an integen andc € Q,, with the distributions de-
scribed in assumption 59. Lét= c¢ +mn mod n?, wherem « Z,. Then, since: was
uniformly chosen inQ),, and the map

OQn X Lp — Qpe
(c,m) — ¢+ mnmodn?

is a bijection, we deduce theltis uniformly distributed inQ,,>. Let(r, m’) = A(1¢,n, e, ),
whereA is the algorithm that invert$, on a random input with a non-negligible prob-
ability . If A gives the correct answer, theh+ mn = r?¢ + m’n mod n?. Reducing
this equality modulo:, we haver?* = ¢® mod n, which is equivalent te = 2 modn,
sinceged(e, A(n)) = 1. ThenG,,!(c) = r with probabilitys. Applying Proposition 60
n is factored with probability. [ |
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2.1.3 Rabin-Paillier scheme

Using the permutatiotF, as a primitive, we are able to develop the following encryp-
tion scheme, which we call Rabin-Paillier scheme.

Key generation. Given a security parametéf, (pk,sk) < I (1¢), that is,pk =

(n,e) andsk = (n, p, q,e,d). Let us observe that the integesatisfyged(e, A(n)) = 1.

In order to be able to prove that one-wayness is equivalent to factoring, as well as se-
mantic security, we need in addition thatd(e,n) = 1 ande > 2 respectively. Since
A(n?) = nA(n), the first condition impliegcd(e, A(n?)) = 1. Notice that for real se-
curity parameters these additional requirements are trivially satisfied in the distribution
IRA as long ag is a small prime number.

Encryption. To encrypt a message € Z, we computec = F.(r,m), wherer is
randomly chosen i),,. The choice of the randomness@y can be done, for instance,

by selectings < Z* at random, and computing= s* mod n.

Decryption. To recover the message from ¢ = F.(r,m), the randomness is

computed firstly, and, afterwards; is easily obtained fromnn = ¢ — r?** mod n?.

To obtainr from ¢, we computet = RSA[n,e] t(cmodn) = c¢?modn, and then
r = G-1(t), computed as explained in section 2.1.1.

2.1.4 Security analysis

In this section we discuss the security properties of the encryption scheme, namely, its
one-wayness and semantic security against passive adversaries. We show the scheme
is OW under the Blum-RSA factoring assumption ahidD-CPA under the D3eR as-
sumption.

One-wayness

In order to study the one-wayness of the scheme, we introduce a new computational
problem which is closely related. Afterwards, we prove that the new computational
problem is intractable if and only if the factoring problem is intractable. In fact, the
new problem is the natural extension to our case of the questions dealt with in [ST02]
and [CNS02].

In [CNS02], given an RSA modulus and a public exponent relatively prime to
A(n), the following function frontZ; to Z,, for [ > 1, is defined:

Hensel-RSA[n, e, [](r* modn) = r* mod n',
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and it is proven that the hardness of computing such a function is equivalent to the RSA
assumption as stated in definition 41. With some slight modifications, the arguments
in [CNSO02] can be applied to our encryption scheme. Let us consideHthssel-
Rabin-Williams function from@),, to ), defined as

Hensel-RW|n, e, [](r* mod n) = r* mod n'

wherer € @,,.. The following proposition can then be stated

Proposition 63 ComputingHensel-RW n, e, 2] with respect to the keypair generator
(PKRSA SKRSAIRSAY "on a random element € Q,,, is hard if and only if the func-

Blum

tion W, is TOW with respect tq PKRSA S KRSA TRSA )

Blum

Proof:
(=) If W, is not one-way, them can be computed from? modn with non-
negligible probability and therefodensel-RW [n, e, 2](r) is trivially computed.

(<) The adversary, who wants to invert Rabin-Williams function on a random input
r?¢ mod n, calls an oracle twice for thElensel-RW|n, ¢, 2] on inputsr?® andr?¢a?,
whereaq is randomly chosen i),,. Assuming that is the probability that the oracle
gives the right answer, the adversary knawsmod n? and ;:?¢ mod n?, whereu =
ar mod n, with probabilitys2. Then, it follows that there existsc Z,, such that

ar = p(1 + zn) mod n’. (2.1)

Raising this equality to the powe€e we obtain the equation

a®*r* = p**(1 + 2ezn) mod n?,

from which z can be computed, since the rest of values involved are known. The last
step is the computation efandy from equation (2.1). This can be done by using lattice
reduction techniques (see [CNS02] for further details). Thereldieis inverted with
probability 2. n

The following lemma states the relation between compulfensel-RW [n, e, 2]
function and the one-wayness of our scheme.

Lemma 64 The encryption scheme described in Section 2.108V4f and only if com-
putingHensel-RW [n, ¢, 2] with respect tq PKRSA SKRSA [BSA ) on a random input
is hard.
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Proof:
(=) For arandom ciphertext— @),,2, the message: is easily recovered from the
Hensel-Rabin-Williams oracle sincenn = ¢ — Hensel-RW|n, e, 2](cmod n).

(<) To computeHensel-RW{n, e, 2] oncy < @, it suffices to choosey «— Z,,
and submitcy + mgn to the adversary that is able to invert the proposed cryptosys-
tem with a non-negligible probability. (Note thatm, is intended to match the exact
probability distribution needed for the query to the adversary.) Since there exist unique
r € Q, andm € Z, such that, + myn = r* + mnmod n?, the adversary answers
with probabilitye. Then,Hensel-RW {n, ¢, 2](cy) = ¢ + (mo — m)n mod n?. n

The above arguments lead to the following theorem:

Theorem 65 The encryption scheme described in Section 2.1QWisif and only if

the Blum-RSA factoringassumption holds. Moreover, an adversary agaid$t with
success probability can be transformed into a factoring algorithm with success prob-
ability 2.

Proof: From Lemma 64 and Proposition 63, one-wayness of our scheme is equivalent
to one-wayness of the Rabin-Williams function, that is in turn equivalent to the Blum-
RSA factoring assumption. [ |

Tightness improvement

Kurosawa and Takagi presented in [KT03] an improvement on the reduction we found
between the one-wayness of our scheme and factoring. They provide a very tight re-
duction, that is, an algorithm breaking one-wayness with success probabéayls to

a factoring algorithm with the same success probability. Their reduction is quite simple
and doesn’t make use of lattice reduction techniques. They prefer to base the one-
wayness of our scheme on the classical factoring assumption, instead of the Blum-RSA
factoring assumption we use. But there is a price to pay in efficiency in their choice:
a prime encryption exponent > /n is needed to prove their result. In this case,
Rabin-Paillier scheme doesn’t present anymore better efficiency in encryption than OU
scheme. See [KTO03] for more details and Section 1.4.1 for our discussion on factoring
assumptions.

At this point, we have to notice that, as the previous schemes with one-wayness
based on factoring, there exists a chosen ciphertext attack that completely breaks our
cryptosystem. The reason for this is that a decryption or@gJdor our scheme can be
exploited to compute thElensel-RW |n, e, 2] function. Indeed, let «— Q,,, m «— Z,
andc = s + mnmodn?. Therefore, ifm’ = Op(c), thenHensel-RW n, e, 2](s) =
¢ —m'nmod n?. Finally, by applying Proposition 63 computififiensel-RW [n, ¢, 2]

IS equivalent to factoring.
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Semantic security

Let us recall the DZR assumption.

DS2eR assumption. The probability distributiond; ,,, D, ,, induced by the fol-
lowing random variable(;, X, over(@,. are polynomially indistinguishable:

X, = (n,e,y) where (n,p,q,e,d) — IS, (19, z — Qn, y = 2> modn?,

BlumPrac

Xo = (n,e,y) where (n,p,q,e,d)«— IRSA (1€), Y — Qp2 .

BlumPrac

Proposition 66 The encryption scheme described in Section 2.1.3 is semantically se-
cure if and only ifDS2eR assumption holds.

Proof: Semantic security is equivalent to indistinguishability of encryptions, that is,
for all mg € Z,,, the distributions

Dy = (n,e, r* +men modn?) where r « @, and

D = (n,e, r** 4+ mn modn?) where r + Q,, m « Z,
are polynomially indistinguishable. It is easy to see that the map

Qn2 - Qn2

¢ — ¢ —mgnmodn?
is a polynomial time bijection. Then, applying Property 18,~ D is equivalent to
(n,e,r*modn?) ~ (n,e,r* +m/n  modn?), where r « Q,,m’ < Z,.

Note that the distribution on the left sidei ,,.
Besides, since’** +m'n  modn? = F.(r,m’), and.F, is a bijection, therD and D, ,,
are identically distributed. [

Finally, sincee > 3 in our encryption scheme, the assumptior2Bf$ seems to be
valid (cf. our discussion in Section 1.4.3).
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2.2 Lifted-Rabin Elliptic Curve Encryption Scheme

Our aim is to design an elliptic curve cryptosystem with provably secure one-wayness

(in the sense of 2.1.2), with semantic security against passive adversaries and with fast
encryption in the standard model. The scheme uses arithmetic motialad merges

ideas from Paillier and Rabin related schemes. As a result, we first describe two new
length-preserving trapdoor permutations equivalent to factoring. The one-wayness of
the scheme is equivalent to factoring and the semantic security is proved under a rea-
sonable decisional assumption.

2.2.1 Some results about elliptic curves

In the sequel we summarize some results about elliptic curves defined over the finite
field Z,, and over the ring%.,» andZ,:, wheren is an RSA modulus. Since in this
section we mainly deal with elliptic curves over rings, the notation is slightly changed
from the one introduced in Section 1.4.2 for finite fields.

Definition 67 Letp > 3 be a prime. An elliptic curve over the finite fiélg, denoted
by E.,(Z,), is the set of point$z, y) € Z, x Z, such thaty? = 2* + ax + bmod p,

wherea, b € Z,, andged(4a® + 27b%, p) = 1, together with a poin© calledthe point
at infinity.

Recall that the set, ;(Z,) is a group, with the usual tangent-and-chord opera-
tion described in 1.4.2. We denote W, ,(Z,)| the number of elements of the group
E,+(Z,). Elliptic curves can also be defined on the projective pBH&,,) as the set of
points(x : y : z) satisfyingy?z = x3+az2*+b2> mod p, andgcd(z, y, z, p) = 1. In par-
ticular, the point(0 : 1 : 0) corresponds to the point at infinity. Following [Gal02],
this definition can be extended to the rifig:. The natural mapr, : E,;(Z,) —
E.,(Z,) that reduces coordinates modulds a surjective group morphism whose ker-
nel is the se{O,,, = (mp : 1:0) | m € Z,}, called the set of points at infinity.

Via the Chinese Remainder Theorem (CRE),,(Z,2) can be defined as a group
isomorphic toE, ,(Z,2) x E,(Z,2) wheren = pq, andp, ¢ are different odd primes.
In the same wayE, ,(Z,,) can be defined as a group isomorphidig,(Z,) x E, ,(Z,).
The natural group morphism frod, ;(Z,:) to E, ;(Z,) will be denoted as,,. Points
on curvesk, ,(Z,2) can be classified in three types:

e Points at infinity:O,,, = (mn : 1 : 0), m € Z,, (the kernel ofr,,)
e Affine points: (z,y) = (z:y : 1) € Eyp(Z,2).

e Semi-infinite points{z : y : z) € E,(Z,2), with gcd(z,n) = p org.
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Point addition on®, ;(Z,) and E, ,(Z,) can be transferred t&,, ,(Z,,) using CRT, but
then the factorization ofi should be provided. However, the usual tangent-and-chord
formulas allows us to perform addition of affine pointsi©n,(Z, ), without knowledge

of the factorisation ofn. In particular, the formula to double an affine point is the
following:

| 24 (x,y) = (\* =22, —A* +3zA —y), where X\ = (32" +a)(2y)". |

To deal with points at infinity, the following addition formulas are used:

Om + Om/ - Om+m/.
(z,y) + O = (z — 2ymn,y — (32° + a)mn).

2.2.2 Some previous elliptic curve based schemes

Galbraith proposes in [Gal02] an elliptic curve scheme based on the one-way trapdoor
function

Xo Ly XLy — Eop(Zy2)

whereQ € E,;(Z,2) is a fixed point whose order is a big-enough factoff,(Z,)|.
The semantic security of the schetiie= A, (r, m) is related to the following decisional
problem: given an RSA modulus an elliptic curveE, ,(Z,2), a pointQ) € E,(Z,2)
whose order is a divisor di, ,(Z,)|, and a random point € E,;(Z,2), determine
whethersS lies on the subgroup generated®y The scheme is only of theoretical inter-
est, since it presents a high computational cost, both in key generation and decryption.
Moreover, Galbraith’s scheme involves the computation of the multipl@, wherer
has roughly the same lengthas

Koyamaet al. propose in [KMOV91] a deterministic elliptic curve RSA based
scheme. They use supersingular elliptic curves of tfp€0,b), and thus avoid the
problem of computing®, ,(Z,)|, becauseE,(0,b)| = (p+ 1)(¢ + 1) whenp = ¢ =
2mod 3. To encrypt a message = (z,y) € Z, X Z,, the following trapdoor one-way
function is used:

KMOV(n,e| : Zy, X Zyy, —> Zpn X Ly,
(z,y) — e#(z,y),

wheree#(x, y) stands for the-multiple of (x, y) computed on the elliptic curvg,, (0, b),
whereb = 3? — 23 modn. Let us observe that the elliptic curve used to perform the
computation is determined by the message point. Although it is required ¢hds’ in
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order to be able to perform the computation, this condition is fulfilled with overwhelm-
ing probability. Fore such thaied(e, (p 4+ 1)(¢ + 1)) = 1, the trapdoor is

d=e ' modlem(p+1,q+ 1),

sinced#(e#(x,y)) = (z,y) on £,(0,b).

A probabilistic version of KMOV scheme has been proposed in [GMMVO03b]. Ba-
sically, this scheme is a lifted version of KMOV that works on supersingular elliptic
curves overzZ,:. For small values ot, KMOV|[n, ¢] as well as its lifted version are
significantly more efficient than Galbraith’s scheme, as shown in [GMMVO03b].

The optimal efficiency would be achieved usiag= 2, but in this case the map
KMOV[n, 2] is not bijective (some points have 4 pre-images, others have none). Next
we show that this inconvenience can be avoided by restricting the set of points, and
using an RSA modulus = pq such thap = ¢ = 5mod 12. In this way, a new trapdoor
permutation equivalent to factoring is obtained.

2.2.3 New trapdoor permutations

In the following, the well-known Blum-Williams trapdoor permutation is adapted to the
elliptic curve setting.

Point-doubling trapdoor permutation.

As in KMOV scheme, only supersingular curvés(0,b) will be considered. Thus,
p = ¢ = 2mod 3. A new restriction on the prime factors afmust be introduced, in
order to avoid the existence of points of order 4.

Observation 68 If p = 5mod 12, then|E,(0,b)| = 2mod 4, and consequently there
are no points of order 4 o, (0, b). Moreover, there is a unique point of order(2, 0),
wheren is the unique cubic root ofb. This implies that given a poit € £,(0, b), the
equation2# P = 2# P has exactly two solutions? = P and P = P + (n,0), since
the order of the poinf — P divides 2.

Now, the elliptic curve analogous to the set of quadratic residues is defined.
Definition 69 For n = pg, andp = ¢ = 5mod 12, let
Dy = {2#(2,y) € Ly X Ly | x € Ly, y € L}, y* — 2° € L)},

where the double#(x,y) is computed on the curvé, (0,b), withb = y? — 3.
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We say thaiz,y) € Z, x Z is adoubleif belongs toD,,. We will also consider the
setsD,, and D, defined in the same way d3, but using modul® andgq instead ofn.
From the CRT, itis clear thad,, = D, x D,.

Lemma 70 If (u,v) € D,, thenv € Z.

Proof: LetQ = (u,v) € D,. Then, there exists a poiit = (x,y) on the same curve
such thatQ) = 2#P andy € Z!. Let us suppose that = Omodp. This implies
that2#7,(Q) = O and thend#m,(P) = O. Since there are no points of order 4 on
E,(0,b), we can assure that#r,(P) = O. Thereforey = 0mod p, and we obtain a
contradiction. n

Lemma 71 |D,| = @ and|D,| = _(p—1)24(q—1)2_

Proof: Let@Q € E,(0,b) N D, whereb € Z,. From observation 68 it is clear that the
equation2# P = @ has exactly two solution®, P € E,(0,b). Since there arg — 1
affine pointsP = (z,y) on E,(0,b) with y € Z:, then|E,(0,b) N D,| = 1. By
considering the@ — 1 possible values fal, we obtain the claimed resylb,| = @

Finally, |D,,| = £=22@=L% comes fromD,, = D, x D, m

Proposition 72 Letn = pq, withp = ¢ = 5mod 12. Then, the following map is a
bijection:
AN, D, — D,
(z,y) — 2#(z,y)

Proof: It suffices to show thaf\,, is injective. A,, is well-defined by the definition of
D,, and lemma 70. In order to prove thay, is injective, let us considep, andQ@- in D,
such thaR#@Q), = 2#@),. On the one hand, this implies that there extsand P, such
thatQ, = 2# P, and(Q), = 2#P,. On the other handy;, P, (), and(), lie on the same
curve an@#(Q2— Q1) = O. Thusd#(P,— P;) = O which implies2#(P,— P;) = O,
since there are no points of order 4Ah (0, b), and therefor€); = Q. [ |

We point out thatd,, is an elliptic analogous of Blum-Williams function. Before
studying the one-wayness &f, we define both the keypair generator and the computa-
tional assumption involved.

Definition 73 Let (n,p,q) «— I5<(1°), wherep,q — PRIMES(¢/2) such thatp =

g = 5mod 12 andn = pq. Thespecial congruence factoring assumptiteites that for
anyPPTalgorithm A

PrA(1",n) = (p,q) | (n,p,q) — IZc(19)] € negl(¢) .
where the probability is computed with respect to distribut@?gﬁ and the coin tosses
of A.
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Proposition 74 A,, is a length-preservingOW permutation with respect p‘;‘é if and
only if thespecial congruence factorimgsumption holds.

Proof
(=) Let us see how to inverh,, efficiently on a point) € D,, given the trapdoor
informationp andq. SinceA,, is a bijection, there exists a poifit € D, such that
Q = 24P, but also exist another poiit € D,, such thatP = 2#R, that isQ) = 4#R.
Let us consider two point§, = 2247, (Q) andT, = 4, (Q). Then,T, =
(p+ 3)#mp(R) = 2#mp(R) = mp(P) andT, = (q + 3)#m(R) = 2¢me(R) = my(P).
Thus, the preimagé® of () can easily be computed froft), and7; by the CRT. In fact,
a point-halving procedure that works in a more general case can be found in [KMOV91].

(«=) Now we show a reduction from the one-waynesg\gfto the problem of fac-
toringn. To do this, take a random pait < (z,%) € Z, x Z* and compute&) = 2#P,
which is uniformly distributed onD,,. Observe thatr,(P) € D, andr,(P) ¢ D,
with probability 1/4. Let us consider that this is in fact the case. Sigtes D,,
there exists a poinP = (z,y) € D, such that) = 2#P. Let us consider an algo-
rithm A such that on inputn, ) returns P with probability . If A succeeds then
24P = 2#P. We can assure now that,(P) = 7,(P) andz # xmodp (note

that, if £ = zmodp, thenn,(P) = +m,(P) andn,(P) € D,, which is a contra-
diction). Finally,gcd(z — z,n) = p. By considering the opposite case(P) € D, but
m,(P) & D,, itis straightforward to show that this procedure gives a non-trivial factor
of n with probabilityes /2. n

Lifted trapdoor bijection.

Next, a lifted version of the maf,, is presented. The technique used here is somewhat
related to the one used in [GMMVO03b]. The following useful property allows us to
lift a point P, € E, (0, by) to a special poinf® on each curve®, (0, ) such that) =

bo mod n.

Property 75 Letb € Z, and P = (zo,y0) € E,(0,bmodn), withy, € Z}. Then,
there exists a unique poifity, y) € E,2(0,b) such thaty = yo mod n.

Proof: Lety = yo +7n € Z},, wherey € Z,. Then,(x,,y) belongs tak, (0, b) if and
only if
3 _ .2 b
y=T0"HTD i (2y0) ' mod n.
n

Letn = pq, with p = ¢ = 5mod 12, and let us consider the following sets:

Qn - {(x,y) € Zn2 X Z;kﬂ | Tn(I,y) € Dn}’ Wn = {(x,y) € Qn | r < n}a
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and the function

7~/Jn:Wn><Zn B Qn

whereP = (z,y), and the double as well as the addition are performed er0, b),
with b = y? — 2% mod n?.

Lemma 76 If p = ¢ = 5mod 12, then the map,, is well defined and bijective.

Proof: The mapy,, is well-defined since,,(x, y, m) is always in2,,. This is implied
by the definition of2,,, sincey,,(x,y, m) € Q, ifand only if m,, (¢, (x,y,m)) € D,,. As
(x,Y) € Wi, mu(z,y) € D, and thenr, (Y, (x,y,m)) = 1, 2#(x,y)) = 2#m,(z,y) €
D,.

In order to show that, is injective, let us suppose, (z,y, m) = ¥, («',y',m’) for
some(z, y), (',y') € w, andm, m’ € Z,. Reducing this equality modulbe, we obtain
2#m,(z,y) = 2#m,(2',y'). By the injectivity of A,, and from the fact that,, (z, y) and
(2, y) are points inD,, we deducer, (z,y) = m,(z', y').

Now, taking into account thdt:, y), (z’, ') belong to the same curvg,z(0, b), and
that0 < z,2’ < n, we use Property 75 to dedute y) = (2/,y’). From this, it is easy
to see tha©),,, = O,,/, som = m/.

Finally, let us show that), is surjective. LetC' = (u,v) € Q, andb = v? —
u>modn?. Then there exist® = (z¢,v0) € D, such thatr, (u,v) = 2#F. Let
P = (z0,y) be the point onE,2(0,b) given in Property 75. ClearlyP? € w, and
2#P — C'is a point at infinity, say),,. Then,C' = 1, (zo, y, m). [

Proposition 77 1, is a length-preserving OW permutation with respect ,ﬁe% if and
only if thespecial congruence factorigsumption holds.

Proof -

(=) Let us see, given the trapdoor informatigrandq, how to inverty,, efficiently
on a pointC = (u,v) € Q,. Letb = v? — u3mod n?. ComputeQ, = 7,(C), that is
a pointinD,, and letF, € D, such that), = 2#F,. The pointF, can be efficiently
computed by using the procedure for inverting described in the proof of Proposi-
tion 74. Then, leP = (z,y) € E,2(0, b) the point given in Property 75 computed from
Py. Clearly,P € w,, andC —2# P is a point at infinity, say),,. Then,C' = ¢, (z,y, m).

(«=) Now we show a reduction from the problem of factorim¢p the one-wayness
of ¥,,. As in the proof of Proposition 74, take a random pairy) <« Z, x Z! and
computeQy = (ug,vo) = 2#(z,y). Now randomly lift Q, obtainingC' = (uy +
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un, vy + vn), wherey andv are randomly selected i,,. Note thatC' is uniformly
distributed on(2,,. Let us consider an algorithmd such that on inputn, C') returns
P = (z,y) € w, andm € Z, such thatC' = ¢, (z,y, m), with probabilitye. If
A succeeds, then, (7,(x,y)) = 2#m,(z,y) = m,(C) = Qo. Thus, by following
the same steps as in the proof of Proposition 74, a nontrivial facteri®found with
probability e /2. [

2.2.4 Lifted-Rabin Elliptic Curve Scheme

Based on the previous TOW permutation, we present an elliptic curve cryptosystem
(ECC) over the ringZ,,2 which is semantically secure against passive adversaries under

a new decisional assumption, and has the fastest encryption and the strongest one-way
security among the known ECC, in the standard model.

Key generation. Given a security parametaf, let (pk,sk) — IZ2¢(1°), that is,
pk = (n) andsk = (n,p, ¢) with p = ¢ = 5mod 12.

Encryption. To encrypt a message < Z,, we choose at random« Z,, andt « Z}
and leth, = * —2® € Z. This choice determines an elliptic cur (0, by) and a point
Q = (z,t)onit. Let By = (0, yo) = 2#( and~ chosen at random iA,,, and compute
y = yo +yn. ThenP = (xz¢,y) is a random point iw,,. The encryption of the message
m € Zy is C = Py (xg,y, m).

Decryption. To recover the messagefrom the ciphertext = (u,v) = ¥, (x,y, m),
the randomnesgr, y) € w, is firstly computed and, afterwards; is easily obtained
from O,, = C — 2#(z, y). We recall the steps to obtafm, y) from C. Let us compute
mn(z,y) by invertingA,, onr,(C) (using the CRT). Next, compute, y) € E,2(0,b),
whereb = v? — u? mod n?, by using Property 75.

In the following, the security of this scheme is analyzed.

One-wayness

The following lemma enables us to compute, with overwhelming probability, a rational
function of the coordinates of a poift, € D,,, given two special lifted point§); and

()2 such thatﬂ'n(Q1> = WR(Q2> = 2#PF,.

Lemma 78 Let Ql = (ul,vl) = Q#Pl and QQ = (UQ,’UQ) = 2#P2 WhereP1 and P,
are different points inv,, such thatr,(P,) = 7,(P). Leth; = v} — u? modn? and
by = v3 — us mod n?. Let(xg,y9) = m,(P.). Then

4
9a (@) = —4fFmodn
Yo
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wherea = (by — by)/nand g = (us — uy)/n.

Proof: SincePy, Py € w,, we can writeP; = (z¢,y;) and P, = (xo, y2), Wherey, =
Y2 = yomodn andzy, < n. Observe that both points lie on different curves. Indeed,
@1 and P, are in £,(0,b;) while Q» and P, are in £,(0,bs). Sinceb; = by modn,
a = (by — by)/n is well defined.
By using the doubling formula, we obtain

322\ ° 9z
U, = Z0) oy = —9% 93,modn?
' (291) O A(zd+ b)) ’
322\ ° 9z
Uy = -Jzzz — 2£U0 = -———?;gll———— — 2£E0 IU()(17Z2
2y2 4((130 + bQ)
and then,
9z3 9z3 9z5(by — by) 9 z3 9
— —_= - — = - = — = Od
2 A2 4+ bg)  Axf+b1)  Axf 4+ bo)(xf 4 by) dyp O
SO

Uy — U 9 /x 4
0= 2 L~ (—O) amodn
n 4 \ yo

Note that if(); and(, are chosen at random (but satisfying the conditions in Lemma
78), thena € Z with overwhelming probability.

From this lemma, given a random modulysve can exploit an adversay/ against
the one-wayness of the proposed scheme to build two such @ingsmd ()., and to
derive efficiently a nontrivial factor aof.

Proposition 79 The one-wayness of the proposed scheme is equivalent spdoal
congruence factoringssumption.

Proof: Let A be an adversary trying to break the one-wayness of the proposed cryp-
tosystem. Let us consider the following probability

SuccQV(¢) = Pr [A(n, ¥n(z,y,m)) =m | (n,p,q) — IS (1Y) (2, y) — wn; m— Zy)

spec

The following algorithmB can be used to obtain a nontrivial factorrof

B(n)
1 T Zn; Yo — Zn; by = §o — Tg modn
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if ged (5o, n) # 1 return ged (%o, n)

if ged(bo, n) # 1 return ged(bg, 1)
(uo, vo) = 24(Zo, Yo), computed inF,, (0, by)
Y Ly 01— Ly Cr = (ug + 711,09 + 611)
my = A(n,Cy); (u1,v1) = Cp — Oy
Yo Zn; 52 — Zn; 02 = (Uo + Y2n, Vg + 52”)
mo = A(TL, 02), (Uz, U2) = CQ — Om2
a=(vi—ud—v?+ud)/n
10 if ged(a, n) # 1 return ged(a, n)
1 f=(ug— u14)/n
%o

12 returnged (— + 48 n)

gg 9ar?

© o N o o b~ W N

At steps 1 to 4 of the algorithm, a random poipg = (uo, v9) € D, is built. Next,
points@); = (uy,v1) and@y = (us, v9) are built by callingA4 twice using two randomly
lifted pointsC andC; coming from the same poiidd,.

If A succeeds in the first call, at step 6, tiigncan be written a§); = 2# P, where
P, € w,. This is a consequence of the bijectivity0f, sinceC; € (2, and then there
exists a unique”; € w, and a uniquen, € Z, such that’;, = v, (P, m;). The same
occurs withQ), = 2#P,, if A succeeds in the second call.

Let us consider the case thdtsucceeds in both calls. Note thgt = =,,(C;) =
m(Cy) and Qo = 2#m,(P1) = 2#m,(FP,). But there is only one point ih,, whose
double iSQo. ThUS,TI’n(Pl) = 7Tn(P2). Let P, = (xo,yo) = 7Tn(P1) = 7Tn(P2). Since
@2, andQ), fulfil the conditions in the previous lemma, then

if o € Z.

On the other hand), = 2#(Zo, %) = 2#PF,. Observe thaP, € D, but P, =
(Zo,%0) is chosen at random. By using the Chinese Reminder Theorgfi)) =
m,(Po) with probability 1/2, and independently,(P) = m,(P) with probability 1/2.
So, with probabilityl /4, 7,(Py) = m,(P) butm,(Fy) # 7,(F). The last inequality
impliesz, # xomod p. To see this, let us suppose thgt= x, mod p. Then,wp(Po) =
—m,(Py). From2#P, = 24P, we deduce that#m,(P) = O. Since there are no
points with order 4 on&,(0, by mod p) then 2#m,(Fy)) = O and consequently, =
0mod p. But, this is not possible due to step 2 in the algorithm.
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Except for a negligible fraction of the values(afy, 7o), it can also be shown that
. 4 x 4
(3) 4 (2) v
Yo Yo

zr 48
d{ 22+ E n)=np
& (@é+9a’n) P

Then, by using Lemma 78,

By considering the other case,(P) = m,(F) butm,(Py) # m,(P,), the previous
gcd expression leads to the other nontrivial factonof

Finally, except for a negligible function @f(due to the technical steps 2, 3 and 10,
and the anomalous values @f,, 7)) the success probability

Succy <" (€) = Pr[B(n) € {p.q} | (n,p,q) — Ipec(1%)]

is one half the probability thatl is successful in both calls. Notice that these two calls
are not independent, since they share the same valueamd (),. However, by using
Lemma 13 in Section 1.1.2 with algorithm, predicateP = “.A succeeds” and map
f(n,C) = (n,m,(C)), the following inequality is obtained

Succh*“T(¢) > (Succaw(é))Q.

N | —

Semantic security

The scheme is semantically secure under the following assumption:

Decisional Small-z Double assumption (DSD assumption).
The following probability distributions are polynomially indistinguishable

Ddouble = (TL, 2#(%?/)) where (napa q) A ]s',?(;g(]'z)v ({L‘, y) — Wy
Drandom = (TL, (:L‘lvy/)) where (napv Q) — IFAC(lz)a ($,7y,) N Qn

spec

Proposition 80 The proposed scheme is semantically secure if and only if the DSM
assumption holds.

!The exception are points (Zg, 7o) such that Zg mod p is a root of a certain polynomial of degree
8. However, by making some cumbersome calculations, it can be shown that if p = 1 mod 8 then
there are no exceptional points, otherwise, i.e. p = 5mod8, there are only p — 1 exceptional
points (modulo p), that is, only a fraction 1/p. (See appendix A for details.)
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Proof: Semantic security is equivalent to indistinguishability of encryptions, so we
have to prove that for ath, € Z,, the distributions
Dy = (n,vn(x,y,mg)) where (n,p,q) «— ];ig(le), (z,y) < wy,, and

D = (n,¢n(z,y,m)) where (n,p,q) ]FAC(lz), (,y) «— Wy, M Zy,.

spec

are polynomially indistinguishable. From the definition of sum of an affine point and a
point at infinity given at the end of Section 2.2.1, it is easy to see that the map

gzn, - gzn
P +— P — 0y,

is a polynomial time bijection. Ther), ~ D is equivalent to
(n,2#(z,y)) = (n,2#(x,y) + On),  with (z,y) «— w,, m' — Z,.

Note that the distribution on the left side i%,.,1.. Besides, since#(x,y) + O, =
Un(x,y,m'), andy, is a bijection, therD and D;.,q4om are identical distributions. =

Hardness of the Small-z Double Problems

In this subsection we argue why one should be confident about the hardness of the new
decisional problem presented in this paper.

According to the formula for computing the double of a point on an elliptic curve
E,2(0,b) (see end of Section 2.2.1), givén,v) = 2#(x1,v1), x1 iS a root of the
univariate polynomiak(z) = z* + 4x3u — 8bx + 4bu € Z,2[z]. Then, DSD assumption
is related to the difficulty of deciding if the polynomi&i(x) has a root smaller thain

Similarly, the semantic security of other related cryptosystems (such as RSA and
Rabin-Paillier schemes) is related to the difficulty of deciding if a certain polynomial
has a root smaller than The best known way to attack the above decisional problems
is to solve their computational versions by using Coppersmith’s algorithm as stated
in Theorem 57. This result ensures that one can efficiently compute all roaib
a polynomial P(x) € Zg|x] with degreed such thatlz;| < K'/¢. Up to now, no
improvement on this bound has been made. The result by Coppersmith implies we can
only find the rootsz,| < (n?)'/* = n'/2 of the polynomialR(x), which does not affect
the validity of DSD assumption.

2.2.5 Efficiency analysis

Now we study the encryption cost of our scheme. Since operations modulo a large
number are involved, we neglect the cost of performing additions, multiplications and
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divisions by small integers. We will express the cost in terms of multiplication$n,
because modular inverses can be computed within a constant number of modular multi-
plications.

Generating (z,y) € w,: 5 multiplications modulaz, 1 inverse modula, and 1n-
length integer multiplication.

Computing 2#(z,y) : 5 multiplications modulm?, 1 inverse modula?.
Adding O,, : 3 multiplications modula:, 2 n-length integer multiplication.

We point out that:~! mod n? can be obtained by computiag! mod »n and then per-
forming two multiplications modul@?. Let ¢ be the number of multiplications modulo
n needed to compute ! modn. Since the cost of multiplying two numbers med
is roughly the cost of 4 multiplications modulg we deduce that~! mod n? can be
computed ir8 + ¢ multiplications modulo:. Practical implementations suggest that the
valuec = 8 can be taken (see [Bre98]). Then, sincethength integer multiplication
cost is bounded by the cost of a multiplication modulothe encryption cost of our
scheme i$5 multiplications modulon.

Next, we will compare the efficiency of our scheme with the well-known EI Gamal
ECC scheme. We assume that El Gamal ECC is performediyy@mereq is 160 bits
long, and our scheme is performed o%€x,, wheren is 1024 bits long, which still are
the more usual values. We will express both encryption costs in terms of multiplications
modulon.

In El Gamal ECC the most time consuming operation is the computation of two
multiplesr# P andra# P, wherer is a random integer whose size is roughly the same
as the modulug, anda is a fixed integer. Then, using thuble and add algorithm,
the computation of these two multiples requires on avetaggditions of points andk
doublings, wheré: is the bit length of. Assuming that a point addition or doubling re-
quires about 12 modular multiplications, then El Gamal ECC would take approximately
3 - 160 - 12 multiplications modulog. Since the time needed to perform a modular
multiplication is quadratic in the size of the modulus, the ratio between the time of a
multiplication modulog and a multiplication modula is % It follows that the en-
cryption time of El Gamal ECC would be equivalent to 159 multiplications modulo
which is almost three times the encryption cost of our scheme.

Thus our cryptosystem is the provably secure IND-CPA ECC in the standard model
with the fastest encryption procedure to the best of our knowledge. In fact, not even El
Gamal ECC is provably secure, since its one-wayness is equivalent to solving ECDH,
but not to solving ECDL.

The key generation of the proposed cryptosystem is faster than generating an RSA
key, since only the modulus is needed. Regarding decryption, the main cost is due to the
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computation o224 P € E,(0,b), and24P € E,(0,b), from P € E,(0,b) which

is almost the same as in the other existing ECC @yer Therefore, the decryption pro-
cedure has a very high computational cost compared to El Gamal ECC, so it is unlikely
that our scheme could compete with EL Gamal ECC from a global point of view.



Chapter 3

Semantically Secure Encryption
Schemes against Adaptive
Adversaries

In this chapter we revisit some of the most relevant asymmetric schemes with semantic
security against adaptive adversaries appeared in the literature. All of them use the
Random Oracle heuristic, except for the ACE key encapsulation mechanism, which is
based on [CS98].

In the first place, we identify some ambiguities in the security proof of the popular
generic conversion by Fujisaki and Okamoto [FO99], from which false conclusions can
be drawn. In doing so, we continue with the careful revision of the provable security
techniques initiated by Shoup in [Sho01], where he questioned some properties of the
OAEP scheme [BR95] which were accepted without proof. We modify the Fujisaki-
Okamoto transformation to remove the ambiguities detected, and to prove that the re-
sulting conversion is secure in the Random Oracle Model (ROM). The security proof is
phrased using current widely accepted proof techniques.

In the second place, we re-evaluate the elliptic curve based KEMs presented to be-
come standards, which are called ACE-KEM, ECIES-KEM and PSEC-KEM. We anal-
yse both their security properties and performance when elliptic curves with efficiently
computable bilinear maps (hereafter referregasng curve$ are used. It turns out that
these KEMs present a very tight security reduction to the ECDH problem over pairing
curves in the ROM; moreover, one can even relate their security to the ECDL problem
in certain pairing curves with a small security loss. The key point is that the ECDDH
decisional problem is solvable in these groups. Itis also shown that ECIES-KEM arises
as the best option among these KEMs when pairing curves are used. This is remarkable,
since NESSIE [Nes03] didn’t select ECIES-KEM as a candidate to standardization.

61
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3.1 Fujisaki-Okamoto Hybrid Encryption Revis-
ited

RegardingIND-CCA public key encryption schemes, several powerful generic con-
structions have been designed [FO99, Poi00, OP01b,"GR4], providing practical
IND-CCA schemes by combining asymmetric and symmetric schemes, with weak secu-
rity properties, in the idealized Random Oracle Model. The proposal by Fujisaki and
Okamoto is by far the most known conversion.

Among these constructions, [OP01b, Ci82a] present a better security reduction
than [FO99, Poi00]. This is mainly due to the use of thaintext checking oracle
introduced in [OPO01a], which enables to use the concept of indistinguishability against
plaintext checking attack8ID-PCA (see Definition 28). The disadvantage of using this
oracle is that the security of the encryption scheme is in general based on (stronger) gap
assumptions, when the asymmetric primitive is probabilistic.

But, as recently shown, unexpected difficulties were hidden in the development of
secure schemes, in so far as the use of provable security has proved to be even more
subtle than it was expected. The first example of this fact was the claim by Shoup
[Sho01] against the widely believed IND-CCA security of OAEP when applied to a
trapdoor permutation. From this and other findings (see [Ste03] for a nice account), we
are aware that there are ambiguities and misconceptions in the security model, which
can lead to false claims.

We aim at revisiting the widely used generic conversion by Fujisaki and Okamoto
(FO) presented at Crypto’99. The particular instantiation of this conversion with the
Okamoto-Uchiyama scheme [OU98], known as EPOC-2 [EPO], has found practical at-
tacks that lead to a total break [JQYO01, Den02a, ST02]. The most serious flaw was
found in [JQYO01], where the secret key was recovered inltiite CCA game itself. The
authors of [JQYO01] pointed out that such a surprising result was related to the vagueness
of theIND-CCA model when dealing with invalid ciphertexts. In the case of the original
especification of EPOC-2, an attacker could obtain vital information about the system
from those ciphertexts. The other attacks mentioned above ([Den02a, ST02]), belong
to theside-channel attacksategory. They make use of extra information available in
the real world, such as the running time of the decryption algorithm. This enables us to
distinguish among the reasons for rejecting certain ciphertexts, and is used to launch an
attack recovering the secret key again.
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Our results

We incorporate the comments made by EPOC authors in [JQY01] about FO conver-
sion. Then we show that some ambiguities still remain in the proof of security, with
the outcome that the security result claimed in [FO99] cannot be guaranteed in general.
This obliges us to slightly modify the conversion and to restrict the class of asymmetric
primitives that can be used.

Furthermore, the concept Blsy Verifiable Primitivés formalized, and it is used to
give anewsecurity proof for the modified transformation. We show that the reduction
is tight, improving the concrete security claimed in the original work for the Easy Veri-
fiable Primitives. For the rest of primitives, the concrete security is improved at the cost
of a stronger assumption; that is, a gap assumption.

Finally, the resistance of the new conversion against reject timing attacks is ad-
dressed. Since the vulnerability of a scheme against these attacks is closely related to
the design of the rejection rules in the decryption algorithm, we take this into account
when drawing the modification.

3.1.1 Easy verifiable functions

Let X,Y, Z be set familiesf : X x Y — Z a Trapdoor Partial One-Way (TPOW)
function with respect to a keypair generafoand g its partial inverse (see Definition
16). Then, a probabilistic one-way cryptosystBKE’ = (PKE.KeyGen’, PKE.Enc’,
PKE.Decf) is obtained fromf in the following way: the keys

(pk, sk) < PKE.KeyGen”(1°)

are generated by using the sampling algorithm fprthe ciphertext for a message
x € Xy with randomnesg « Y, is ¢ = PKE.Enc/(pk, ) = fu(,y) and a valid
ciphertextz € Z,, is decrypted by means &KE.Dec’ (sk,c¢) = gu(c). Note that we
are implicitly assuming that” is samplable.

New kinds of attacks and computational problems have been introduced and several
applications found in the context of probabilistic cryptosystems (cf [OP01a, OP01b]).
In this new scenario, the attacker has acces9laiatext checking oraclthat checks if
a given ciphertext is an encryption of a given message

Definition 81 A plaintext checking oracl®p¢ for a TPOWfamily f : X x Y — Z,
is an oracle such that for a queripk, z, z), wherepk € PK, z € X, andz € Z,
Opc answers 1 if there existp € Y, such thatf,(x,y) = z, and 0 otherwise. (Itis
assumed that it or z are outside their domains, the oracle also answers 0.)

The new attack is calleldlaintext Checking Attag® CA), and it can be reformulated
in terms of trapdoor partial one-way functions.
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Definition 82 A TPOW function familyf is Partial One-Way against Plaintext Check-
ing Attacks (TPOW-PCAJf it is a TPOW function even when access to a plaintext
checking oracl&pc for f is given.

This notion is stronger than partial one-wayness, since now the adversary is provided
with extra computational resources. Now we formalize the concega®y verifiability
informally described in [P0oi00], which captures the situation where there exists an effi-
cient algorithm thaverifiesif a pair (z, z) is correct; that is, the algorithm implements
a plaintext checking oracle.

Definition 83 A map familyf is easy verifiablef it is a TPOW family and there exists
a (deterministic)PT algorithm V), called plaintext checking algorithgnwith the same
input-output behaviour as the plaintext checking oracleffor

Obviously, if f is easy verifiable then the plaintext checking oracle faran be
replaced by the algorithii¥, without introducing any modification in the adversary’s
model of computation. These functions are very interesting, since

Lemma 84 If the map familyf is easy verifiable, then it §POW-PCA

3.1.2 Some examples of easy verifiable functions families

It is straightforward to modify a TOW function familj : X — Z to obtain an easy
verifiable function familyf. To do this, simply tak&” = {0,1}?), wherep(¢) €
poly(¢), and definef, (z,y) = (fo(z),), thatis, leaving “in the clear”.

For an arbitrary TPOW function family a plaintext checking algorithm could not
exist. For instance, this is supposed to be the case for EIl Gamal and Okamoto-Uchiyama
functions. In this situation, we are forced to base TPOW-PCA on a gap problem, which
is a stronger assumption (cf [OP0l1a, OP01b]).

A non-trivial example of an easy verifiable function is the RSA-Paillier trapdoor
permutation defined in [CGHNO1]. A generalization of that function is presented below.

Easy verifiable function families from RSA-Paillier

Let (n, e, p, q,d) «— IRSA(1%). For any integer > 1 with size polynomial ir¢, consider

prac

the subsef,, , C Z,, defined as2,,, = Z; + nZ,. Then, the function family

*
fn,r,e : Zn X Zr B Qn,r

(r,y) — 2+ nymodnr

turns out to be a trapdoor permutation family, f& = (n,r,e) andsk = (p, ¢, 7, d),
whered is the inverse of modulo(p — 1)(q — 1).
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This function is well defined since € ,, . iff zmodn € Z;. Note thatf,,, . is a
bijection. Indeed, suppose that, .(zo,Yo) = fure(x1,y1) fOr somezxy, yo, z1 andy;.
Reducing the equality module, we obtainz; = z{ modn, and thenty = z; modn.
This impliesny, = ny; modnr, soy, = y; modr and the functionf,, , . is injective.
Finally, given(p, ¢, 7, d), to invertf, ,. on inputz = f, . .(x,y), it suffices to compute
x = z%modn. Then,y is easily obtained from the equatiay = z — ¢ mod nr. This
showsf,, ... is exhaustive, and therefore it is a bijection.

The above implies that there exist two PT algorithms that computefethand its
partial inverse.

Proposition 85 The partial one-wayness of the bijection famyly, . is tightly equiva-
lent to thepractical RSAassumption.

Proof:
=) Assume that for soméandr there exists a PPT algorithnd, breaking the partial
one-wayness of,, , . in time 7" and probability, i.e.

Pr [.A(n,r,e,xe +nymodnr) =z | (n,e,p,q,d) — I'A15); ©— ZF; y — Zr} =€

prac

The following PPT algorithm/3, can be used to invert tH@SA|n, | function in time
T + O(¢?) with probability at least:

B(n,e,z)
1 Yy« Zyp, 2 = z+nymodnr
2 x+— A(n,re )
3 returnx

Then,Pr [B(n,e,z°modn) =z | (n,e,p,q,d) — Ifor(1%); x — Z5] > e.

prac

<) Trivial. [

Proposition 86 The bijection familyf,, ... is easy verifiable.

Proof: A simple plaintext checking algorithm works as follows. On inputr, e, x, z),
first verify if z € Z andz € Q, ., thatis,z < nr andzmodn € Z;. Then, check if
the equation® = z (mod n) holds. ]
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Easy verifiable function families from pairings

In this subsection, a second non-trivial example of an easy verifiable family is de-
rived from ElGamal encryption, by taking advantage of non-degenerate bilinear maps
to solve the Decisional Diffie-Hellman problem. Currently, the only known efficiently-
computable non-degenerate bilinear maps are the modified Weil pairing and the Tate
pairing [Men93].

Let E(F,) be the group of points of an elliptic curve over the finite figld with a
bilinear non-degenerate function,

e:GxG— G

whereG is the subgroup generated by a painte E(F,) with prime orderp and G’
is a suitable group. Let us suppose that there are no affine poiatdiy with null z-
coordinate. Using the Weierstrass equatjdn- x3 + az + b for characteristic different
from 2 and 3, this is accomplished by choosing € F, such thab is not a quadratic
residue.

Let W = sP be thes-multiple of the pointP, for some secret value€ Z;. Let us
consider the function family

fw F,xZy — (G\{O}) xF;
(z,y) — (P (yW).z)

whereQ stands for the point at infinity an@,1?"),. stands for thec-coordinate of the
pointyW. Then, fy is a trapdoor bijection family, fopk = (£, G, P,p, W) andsk =
(E,G,P,p,W,s).

The function fy, is clearly injective. To show the bijectivity ofy, it suffices to
compute the preimager,y) of any (Q,r) € (G \ {O}) x F; in the following way.
z = ((sQ),)""r andy is just the discrete logarithm ap with respect toP. The
computation ofr can be done in polynomial time sk is given. However, there is no
known method to computg in polynomial time. This shows that there exist two PT
algorithms that compute botfy, and its partial inverse.

Let (sk, pk) < I§{y., be the probability distribution o K x S K*C induced by
the algorithm generating elliptic curve group descriptions with the following properties:

e gis aprime (power) with length polynomial iy such that the characteristicI6f
is different from2 and3.

e a,b € F, such thab is not a quadratic residue i), and4a® + 276 # 0.

e ¢ is a prime with lengtif and P is a point of ordep on the elliptic curvef(F, ),
defined by the Weierstrass equatign= > + ax + b.
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e There is a unique subgrodpof orderp in E(F,), i.e. the subgroup generated by
P.

¢ thereis a non-degenerate polynomial-time computable bilineaemép< G —
G', for a suitable groug:’.

Proposition 87 The partial one-wayness of the bijection famfjy is tightly equivalent
to the hardness of tHeCDH problem with respect to the probability distributidﬁﬁfﬂap.

Proof -
(=) Assume there exists a PPT algorithdn breaking the partial one-wayness of
fw intimeT and probabilitys, i.e.

EC l
Pr | A(E, G, P,W,yP. (yW),a) = o | P G P21V o) = i (1)
r—Foy—17Z,
The following PPT algorithn8, can be used to solve ECDH in tirfie+ O(¢?) + 27T'[e]
with probability at least, whereT’[e] stands for the time involved in the computation
of the bilinear ma:

T, «— ro !

1

2

3

4 T, — sqrt(T? + aT, + b)
s T — (T,,T))

6 ife(P,T)=e(Q,W); returnT; endif
7 return =T

where sqrt(z) stands for an algorithm that computes one of the two square roots of
F,. Then,

Pr(B(E,G,P,yP,W)=yW | (E,G,P,p,W,s) — Igfgﬂap(lf); y— 7] >,

since, if A succeds, theff, = (yW)z. Thus,T' = yW (so,e(P,T) = e(Q,W)) or
T =—yW.

(<) Trivial, computingyW from P, y P andV. ]

Proposition 88 The bijection familyfy, is easy verifiable.



68 CHAPTER 3. ADAPTIVE SEMANTIC SECURITY

Proof: The plaintext checking algorithm works as follows. OninQtitG, P, p, W, z, Q, r),
firstly verify if x,r € F; and@ € G, i.e. pgQ is the point at infinity. Then, compute
the pointT = (7., T,) such thatl;, = rz~! andT, = sqrt(T2 + aT, + b). Now,
the existence of € Zj; such that- = (yW),x is equivalent tae(P,T) = e(Q, W) or
e(P,T)e(Q,W) = 1. Notice that the first equality implies that= 31/ and the second
one implies thatl’ = —yW. [ |

3.1.3 Symmetric encryption

In the sequel, we introduce a definition for symmetric key encryption different from
that given in Section 1.2.1. Our aim is to be as close as possible to the tools used in
[FO99]. The main difference is that in this new definition the scheme has a restricted
message space, and that a certain relation is required between encryptions keys and pairs
of plaintext-ciphertext.

Let K and M be two (samplable and recognizable) polynomial size sets that re-
spectively denote the key and message spaces. Let us consider a symmetric encryption
schemeE*¥™ = (KeyGen®™ Enc®™™ Dec®™), over these sets, with the following prop-
erties.

o KeyGen®¥™ is a PPT algorithm that on inpuf outputs a uniformly distributed
element ink,.

e Enc®™ andDec®™ are PT algorithms with inputs iR, x M, and outputs inV/,.
DenoteEnc;”™(m) = Enc®™(k,m) andDec;’™(c) = Dec™™(k,c). For each

sym

k € K;, Enc’™ is a bijection on)/, andDec;”™ is its inverse.

e For each paifm,c) € M, x M, there are at most values oft € K, such that

c = Enc?™(m).
Such a cryptosystem hasdistinguishability of encryption§IND-SYM), also called
Find-Guess security in [FO99], if any couple of PPT algorith#l¥P—SYM(gsvm) —
(A1, As) (called “finding” and “guessing” stages of the adversary) have negligible ad-
vantage in the following game:

Game IND-SYM()
1 b+ {0,1}
2 (mg,my, s) — A (1°)
3 k«— Ky ¢ =En)”" (my)
4 b — Ay(s, )
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That is,£%¥™ is IND-SYM if and only if for all A'NP—SYM(gsym),
Adv [ANP=SYM(gsvm)] — 12Pr [V = b] — 1| = |Pr [t/ = b] — Pr[b/ # b]| € negl(¢)

The messages, andm; generated byd; must be in),.
Note that this is a weak concept of security, which considers a passive adversary, but
it is all we require to build a hybrid cryptosystem.

3.1.4 Revisiting Fujisaki-Okamoto hybrid scheme

The transformation introduced in [FO99] from weak symmetric and asymmetric schemes
into anIND-CCA hybrid encryption scheme is revisited below.

The original construction

Let PKE/ = (PKE.KeyGen’, PKE.Enc’, PKE.Dec’) be a probabilistic asymmetric en-
cryption scheme, defined from a TPOW function famflyver the setsX, Y and ~7,
and&s¥™ = (KeyGen®™ Enc™™ Dec™™) be a symmetric encryption scheme over the
setsK and M. Let G be a random function ovel, and H an independent random
function overY'. The hybrid schemeEF° = (HE.KeyGen¥©, HE.Enc¥®, HE.Dec"©),
proposed by Fujisaki and Okamoto, works as follows.

Key generation. The public and secret keys are generated &KiB.KeyGen’.

Encryption. The ciphertext for a message € M, is ¢ = (fo(z,y), Enczli:;(m)),
wherey = H(z, m) andx is uniformly chosen inX,.

Decryption. To decrypt a ciphertext = (¢y, ¢2), firstly computer = gq(c1). Then,
computem = Decfgg(c?) and returnm if ¢; = fo(x, H(x,m)). Otherwise, return
reject. If it is not possible to computg,(c;) or DeCSGz:;L(CQ), returnreject.

Let AND=CCA(HE) [T, ¢, g4, qu, gp] denote an adversary against tN®-CCA secu-
rity of the above cryptosystem that runs in tifi@vith advantage, doing no more than
qa, qu andgp queries respectively to the random oradlesH and to the decryption
oraclesDy, and Dy .~. When queried with a ciphertext the first decription oracle
answerHE.Dec(sk, ¢). The only difference betweeR,, andDy .- is that the second
oracle rejects the query, answeringeject. Then, the result claimed in [FO99] can be
reformulated in the following way:

Theorem 89 If there exists an adversard'NP=“A(HE)[T, ¢, ¢, qu, qp), then there
exist an adversarylP°V against theTPOW of f in time T} with success probability;
and an adversary{'NP—SYM(gsvm) ggainst thelND-SYM security of£5¥™ in time Ty
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with advantage, such that

1 1\ %
8§(2(QG+QH)51+52+1)(1_281_252_M_M) -1
and
T = min(Ty, Tz) — O((qc + qu) log(| X || M]))

The main drawback of this scheme is that the security reduction obtained in the
proof is not tight, due to the quantity; + ¢y multiplying ;. However, the same
authors improved in [FOO01] this result for the particular case of the Okamoto-Uchiyama
scheme [OU98] (known as EPOC-2) and claimed, without proof, that a tight reduction
is obtained for trivial easy verifiable primitives, in our terminology.

Identifying dangerous ambiguities

However, as pointed out in the introduction, several attacks against EPOC-2 have been
found [JQYO01, Den02a, ST02]. Despite the changes introduced in FO conversion af-
ter [JQYO01], there are still some ambiguities both in the scheme and in the security
proof, which compromise the validity of the above theorem.

For instance, let us consider a TPOW function fanfilyand X, C ka such that
fok(z,y) is computable in polynomial time for any € X, andy € Y. Then, some
badly generated ciphertexts= ( f(z, H(z,m)), Enc?ﬁ(m)) for x € X, \ Xpx may
be accepted. This was the case for Okamoto-Uchiyama function in the original EPOC-
2, whereX . = Zgey and X,y = Zye, for 2¢ < p < 2¢ + 1. This information was used
in [JQYO01] to obtain the secret valye

As Fujisaki and Okamoto proposed later in [FOO1], this attack is avoided if all ci-
phertexts(c;, cz) such thatg(c1) ¢ Xk are rejected. However, when this change is
included in the general conversion, a problem of a different kind ariseX. i not a
recognizable set, the checking cannot be performed in polynomial time. In this case the
simulation of theDy in the proof is not correct.

Nevertheless, an additional oracle could be used to solve this problem. In this situ-
ation, an adversary can use the decryption oracle to sahffi@ult decisional problem.

As a result, we could only guarantee that breaking the security of the cryptosystem is
equivalent to solving a gap problem, that is, a stronger assumption than claimed.

This is the case for the Blum-Williams one-way trapdoor permutation (i.e. squaring
quadratic residues moduto = pq, p = ¢ = 3mod4), whereX,, = Q, and X, =
Q. U —Q,. Rejection of all ciphertextc;, c2) such thatgs(c;) ¢ X« means that
the adversary will know if an arbitary € 7Z, is a quadratic residue. Thus, tH¢D-

CCA security of the hybrid cryptosystem will be based on the gap between the quadratic
residuosity module and factoring: assumptions.
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3.1.5 The new proposal

From the above discussion, we know that although it is necessary to chgglcif €
X,k to prevent leaking vital information, this cannot be done in all cases.

In this section, we restrict the asymmetric primitives to those which admit a correct
and unambiguous proof of security for the general transformation. We also take into
account the results in [Den02a, ST02], which use the ability to distinguish among re-
jection rules in the hybrid scheme to launch a total break. Thus, we slightly modify
the specification of the decryption algorithm in the conversion. Finally, the recent de-
velopments in [OP01b, CH02a, CHJ02b] can be applied to this transformation, and
together with the concept of easy verifiable primitives, they are used to gew @roof
of securityimproving the concrete security result presented in the original work.

Let PKE/ = (PKE.KeyGen’, PKE.Enc/, PKE.Dec’) be a probabilistic asymmetric
encryption scheme obtained from a TPOW function fanfilpver the setsX, Y and
Z,and&%¥" = (KeyGen®™ Enc®™ Dec™™) be a symmetric encryption scheme over
the setsk’ and M. Let G be a random function ovek, andH an independent random
function overy’.

The first change we introduce is that the random functiGnand H are defined
with unrestricted inputs, as explained in Section 1.3.3. We believe it is not realistic to
restrict the inputs of the random functions, as suggested in [FO99], since in a practical
implementation random functions are replaced by cryptographic hash functions. Then,
if a proof of security can be driven for unrestricted domains, this choice is preferable.

Now, X and M must be recognizable sets. Note that this is a restriction only for
X, since almost alwayd/, = {0,1}*), for some polynomiap. In contrast,” is
not required to be a recognizable set. Instead of this, it is assumed that there exists a
recognizable se¥ such thatZ,, C Z,, and that the partial inverse gf, can also be
computed (in polynomial time) on elements of the extended sget

The proposed hybrid cryptosysteRE = (HE.KeyGen, HE.Enc, HE.Dec), is almost
the same as the original. The only, but nevertheless important, change is that now two
different reject symbols are produced in the decryption algorittinbec. Thus, when
a ciphertext is rejected, the adversary will know the reason, depending on the output,
and will not be able to mount a timing attack. Then, if the computing time of each step
in the algorithm is independent of the data, the scheme seems to be robust against reject
timing attacks.

HE.Dec(sk, ¢)
1 ife @ Zp X My; return reject;; endif
2 (c1,09) =c
s 2 galor)
4 m — Decg)(c2)
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5 y— H(z,m)
6 ifx & Xpwor fox(x,y) # c1; returnreject,; endif
7 returnm

We point out that in théR operation in step 6 of the algorithm both predicates have
alwaysto be evaluated in order to prevent the adversary from detecting an extra rejection
reason.

Now, the security results are stated. The first theorem is for the special casg¢ when
is an easy verifiable function family, while the second theorem works for general TPOW
function families.

Theorem 90 If there exists an adversam'NP—“CA(HE)(T', ¢, qc, qu, qp] against the
IND-CCA security of the proposed cryptosystem for an easy verifiable function family
f, then there exists an adversady°" that in timeT} breaks the partial one-wayness of

f with success probability; and an adversaryd'NP—SYM(gsvm) that in timeT breaks
IND-SYM security of£5¥™ with advantage, such that

29pqu"Y 2qp

e < €1 +3<€2 +
’K| — 4gpqHa"Y |Y| —dp

and
Ty < (9¢+qu +qp + qc9p)T[V] + ap (T[f] + T[DecsymD +T

whereT[V] is the time complexity of the plaintext checking algoritm faand 7°[f] is
the time complexity of.

Proof: The proof is given in Section 3.1.6. |

Notice that now the probabilities are tightly related. In the general case, the plaintext
checking algorithm could not exist. Using the access to a plaintext checking oracle
instead, the following result is straightforward.

Corollary 91 If there exists an adversatd'NP~C“A(HE)|T, ¢, ¢4, qu, qp] against the
IND-CCA security of the proposed cryptosystem, then there exist an adversary
ATPOW=PCA that in time T, breaks theTPOW-PCAof f with success probability,

and an adversaryd'NP=SYM(gsym) that in timeT breaksIND-SYM security of&sv™

with advantage, such that

2qpqu7y 2qp

€< e+ 38+
’K| — 4DYH"Y |Y| —d4p

and
Ty < (g¢+qu + 9o + 9cqp) + ap (T[f] + T[Decsym]) +T

whereT'[f] is the time complexity of.
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Proof: It suffices to invoke the PC oracle into the plaintext checking algorithior f.
Thus, by definition of oracle access|V| = 1. ]

Particular cases

Both in the case of the trivial construction of partial one-way function families and in
the non-trivial family defined in Section 3.1.2, the simulation in the security proof can
be improved introducing only technical modifications.

In both cases, there exist a polynomial size set farilgnd two very efficiently
computable function familieg : X — Z and# : Z — Z such that for alpk € pk,
x € Xy andz € Zy, V(pk,z,2) = 1if and only if f,(z) = 7(2). Notice that this
property implies the injectivity of . It is shown in the appendix that

TIA™) < (g6 + i) T1f) + o (T1f] + T[7] + TDec™™)) + TIANO-CCA(HE)

which provides avery-tightsecurity reduction. )
If the trivial constructions are considerefy(z,y) = (fok(2),y) andw(2,y) = 2
soT'[7] can be neglected. Moreovér|f] ~ T[f] so

T[AP™] < (g6 + am + ap)T[f] + qpT [Dec™™] + T[ANP~CA(HE)]

Onthe other hand, using the generalized RSA-Paillier fyncﬁgne(x) = z°modn
and7, . .(z) = zmodn. Note thatZ,, .. = Z,,,.. = Q,, andZ, , . = Z;. Then,

TIA™"] < (gc + amr + ap)O(€* loge) + qpT[Dec™™] + T[AMP~CA(HE)]

3.1.6 Security proof

Let A(HE)[T,¢, qc, qu,qp] = (A1, Ay) be the adversary aiming to attack th¢D-
CCA security of the hybrid encryption schentéf = (HE.KeyGen, HE.Enc, HE.Dec)
described in Section 3.1.5.

In order to prove the theorem, some different games will be considered. Starting
from theIND-CCA game, we will introduce several intermediate games before designing
the game for an adversary who tries to break the partial one-wayP@¥¥)(of f. Each
game will be obtained by introducing slight modifications into the previous game in
such a way that the adversary success probabilities are easily related.

Although in all games the adversary uses the same coins, this might not be the case
for the coins used in the games along the simulation. Thus, different games might lie
in different probability spaces, and the events defined from the vied"t-““A(HE)
might occur with different probabilities. Let us denotefby|F'] the probability of event
Fin game;.
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Each game will be described as a main algorithm along with some auxiliar algo-
rithms used as oracles y'NP~CCA(HE). The bulleted steps in the algorithms will
indicate the main changes introduced in the game, with respect to the previous one.

The following trivial lemma will be very useful in this proof, since it allows us to
relate the probabilities of an event across different games.

Lemma 92 Let F;, F} be two events defined in a probability spate and F,, F; an-
other two events defined in a probability spaktg such that = Pry, [F3] = Pry, [Fi]
andPry, [Ey A —Fy] = Pry, [E1 A —=F]. Then

|Pr?(2 [EQ} - Per [Elﬂ <p

Since we consider different probability spaces, this lemma is a generalization of the
lemma used by Shoup in [ShoO1].

Game0. TheIND-CCA attack. There are some minor differences between GameO
and the standariND-CCA game, described in Section 1.3, but they do not modify any
probability.

Game0()
1 (pk,sk) < HE.KeyGen(1%); G + R(K;); H < R(Yu)
2 b—{0,1}; o — Xy
3 (mo,my,s) — AP (pk)
4 y*— H(z*,my); ¢* — (fpk(x*,y*), Encg/g*)(mb»
G, H, Dy o

5 b — A, (s,c")

where the oracle’s answép,(c) is exactly the same as the value returned by the
HE.Dec(sk, c).

Let Askx be the event that, during the game, eitiiee X is queried (by4A'NP~CA(HE))
to G or (z*,m) is queried toH, for somem. Then,

Adv [ANP=CCAHE)] = |Pro [/ = b] — Pro [/ # b]| <
< |Pro [ = b A Askx] — Pro [/ # b A Askx]| +
+ |Pro [b' = b A —Askx] — Pro [0 # b A —~Askx]| <
< Prg [Askx] + |Pro [0 = b A =Askx] — Prg [0 # b A —Askx]|

For the sake of the readability of the rest in the proof, let us défine- Askx,
So1 = —Askx A b = b andSgy = —Askx A b’ £ b. The above equation can be rewritten
as

Adv [AIND*CCA(HE)] S Pl’o [Sl] + |Pr0 [501] — PI’O [Sog”
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Gamel. In this game, the queries made #\°~““A(HE) to the random oracles are
intercepted in order to immediately abort the execution of the gamekit (i.e. S;)
occurs. The following functions will perform thisda

G1(x)
1 ifx=ua% b — {0,1}; exit game; endif
2 return G(x)

H1l(x,m)
1 ifx =a% b« {0,1}; exit game; endif
2 return H(x,m)

and the new game is the same except for replacing the oracles giveNo““A(HE)
by the above functions.

Gamel()
1 (pk,sk) < HE.KeyGen(1%); G + R(K,); H « R(Yy)
2 b—{0,1}; x* — X

o 3 (mo,mi,s) — A7 (pk)

ooyt e Hwtm); o (fola® ), Encl (my) )

G1,H1,D
e 5 U — A, * (s, c*)

Since the games are identical whef;, the eventsS;, So; and Sqo remain un-
changed in Gamel. Then,

Adv [ANPTCA(HE)] < Pry [S1] + |Pry [So1] — Pri [Soo]|

Game2. In this game, the decryption oracle is modified in such a way that it is disal-
lowed from making new queries to the random oragld_et Q. be the set of all values
queried by ANP~CCA(HE) to oracleG1 to the execution point. Now in this game, all
ciphertextsc;, co) submitted to the decryption oracle such thatc,) & X N Q¢ are
rejected by returningeject,, even when some of them may be valid ciphertexts.

DQSk(C)
1 ife @ Zy X My; return reject;; endif
2 (c1,09) =c
s 2 galor)
4

° if v & Xpkorz € Qg; returnreject,; endif
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5 m — Decy)(c2)
6 y<«— H(x,m)

7 if fox(z,y) # c1; returnreject,; endif
8 returnm

and decryption oracl®; .- is modified in the same way. In the main game algorithm,
ANP=CCA(HE) is provided with oracle®2,, andD2 .- instead ofDy, andDq .+

Let F be the event that, in some query to the decryption oracle, the ciphertext is
accepted in Gamel, but rejected at step D0f,. BeforeF occurs, both games are
indentical. Then, by Lemma 92,

|Pr2 [51] — Pr1 [51H S Pr [F]
|PI’2 [501] — PI’]_ [SOIH S Pr [F]
|Pr2 [Soo] — Pl’l [Soo” S PI’ [F]
From these inequalities, it can be easily shown that
Adv [ANPTCA(HE)] < Pry [S1] + |Pr2 [So1] — Pra [Soo]| + 2Pr [F]

The following lemma gives an upper bound fr[F].

Lemma 93

qpqH7Y qp
Pr|F] <
Fl< K| —aqpauy Y| —ap

Proof: Let F;, be the event thaf occurs exactly at thé-th query to the decryption
oracle. ClearlyPr[F] = > /2 Pr[Fi]. Note thatAskx cannot occur before the,-
th query has been made. In order to compute an upper bouRd[Bf], it will be

better to consider the conditional probabiljly = Pr [Fk | \/f;ll ﬁFi], which means

the probability thafF occurs exactly at the-th query supposing that games 1 and 2 run
identically until this query. Thur [Fx] < p, and

Let us compute an upper bound fgr. Now, games 1 and 2 run identically just until
the k-th query, which will be denoted by

Suppose for a while that'NP~“CA(HE) is in the ‘finding’ stage. The only informa-
tion available to the adversary in order to generate the cypheriexthe view of the
game at this execution point, that\Sew = (pk, Z¢, 7y, 7p), Where7, denotes the
sequence of all queries made WNP—“A(HE) to the oracleO (that isG, H or the
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decryption oracles), along with the corresponding answers. To find an upper bound for
pr, we will consider the best choice foyfor each possibl®iew.

The evenf, occurs if and only ifD2(¢) # Dy (¢); that is, D2 rejectsc (returning
reject,) while Dy, accepts it. This means that= (fo(z,7)), ¢2), wherez € X, \ Qq,

Y € Yok, €2 € My, and the equatiop = H(z, Decy 7 (¢2)) holds.

If View andc are fixed, them,, depends only on the joint probability distribution of
G(z) and H(z, Decjj ;) (¢2)). But this distribution is conditioned by the answers given
by H to the queriegz, m) for somem, and the answers given Iy, to the queries
(fok(Z,y),c2) for somey € Y, andc, € M,. Notice that any queried ciphertext
c &€ Zyx x M, is rejected byDy, independently of the values taken by the random
functions.

In the worst case, all queries #f}; and7p are related ta; that is,h; = H(Z, m;)
fori=1,...,qy, andc¥) = (fo (z,y;),c5)) for j = 1,... k — 1. Sincez & Qg, then
Dy (cl )) D2 (cW)) = reject,, and theny; # H(z, Decgy(g)(c;”)). These equations
could be mcompatlble for some values@fz), namely thoseg € K, such thatn; =
Decsym(cg ) andh; = y; for some(i, j). In the (unfeasible) worst case, allandy; are
equal and there can be updg(k — 1)~ forbidden values foz(z). Then, the random
variableG(z) is uniformly distributed over a set of at leasf,| — (k — 1)qy~y elements.

There are at mosyy different values ofy such that(z, Dec}V™ (¢;)) € Qp, where
Qy is the set of pair§z, m) queried to by ANP~CCA(HE). For these valueg; =
H (7, Dec;”™(¢z)) can be ensured if all; are equal tg. Thus,

qa”Y
|K£| — (k= 1)quy

For anyg such that(z, Dec;"(¢;)) ¢ Qu, the variableH (z, Dec;""(¢z)) is uni-
formly distributed over a set of at leadt,.| — (k — 1) elements, becausedf = &,
then the valuey; is forbidden. Consequently,

Pr|Fi A (2, Decgyiy (€2)) € Qur | View

1
= Vol = (k= 1)

Pr|F A (Z,Decgyyy(c2)) & Qn | View

and summing up, we obtain

find qu” 1
P +
g !Ke\ (k=1Daquy  |Yo| — (K —1)

If AIND-CCA(HE) is in the ‘guessing’ stage, then holds valuable information. In
fact, View = (pk, 7, 7, 7p, ¢*), butc* depends only o-(z*) and H (z*, m;). Thus,
if = # 2*, ¢* does not give any additional information abéyt and everything goes the
same way as in the ‘finding’ stage.
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If £ = x*, the restrictiore # ¢* must also be considered. Moreover, there are no

queries inQy related tox*. Then, in the worst case, the joint distribution @fz)
and H(z, Decgy; (¢2)) is conditioned by the equations # H (z*, Deci}%’(’;ﬂ)(cg”))), for
j=1...,k—1y" = H(z* my) andmy, = Decjj.(c3).

The equalityy* = H(z*, my) is useless, since the only valid ciphertext related to

sym

H(a*,my) is ¢*. Nevertheless, fromn, = Dec,.,(c3), only a reduced number of

sym

values ofG/(z*) remain possible, but, as abov(z*, Dec ., (c2)) is uniformly dis-

i 1
tributed over a set of at leat,.| — (k — 1) elements, ang;"* < _
. Yo = (k1)
Finally,
% qua”y 1 qpqm?Y qp
Pr(F] < N ) <

Game?2’. In this game, oracle§ and H are simulated by using tabl€g; and7;, as
described in Section 1.3.3. The generation of the ciphertext, which is also different, is
equivalent to redefining some values of the random functions used in Game2. Namely,
G(z*) = g and H(z*,m;) = y*. But these changes in the oracles do not affect the
probability distribution of the view ofA'NP~C“A(HE), since in Game24'NP~CCA(HE)
neitherz* is queried toG nor (z*,m) to H, for anym. (Note that, at step 6 dD2,

x # x* sincex* & Tg1.)

Game2'()
e 1 75« empty; Ty < empty
2 (pk,sk) < HE.KeyGen(1%)
3 b—{0,1}; 2" — X
o (mo,my, s) — A1G2/,H2/,D2;k(pk>
o 5 gt — Ky y* — Yoo ¢ — (fox(z*, y%), Encii™ (my))

g*
G2/ ,H2' D2
6 U — A, * (5, %)

D2y (c)

if c € Zok x My; returnreject;; endif

(c1,09) = ¢

T < gsk(cl)

if v & Xk orznotinZg; returnrejecty; endif
g« Ta(z)

o A W NN =
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m « Dec;’™ (c3)

y — H2'(x,m)

if fox(,y) # c1; return reject,; endif
returnm

© o ~N O

G2/ (z)
e 1 ifzinTg; return 7g(x); endif
2 ifx = x*; exit game; endif

e 3 r— K,
4 insert(z,r) in table7g
5 returnr

H2' (x,m)
o 1 if(z,m)inTy; return Ty (x, m); endif
2 ifx = 2*; exit game; endif
3 T < ka
4 insert((x,m),r) in table7y
5 returnr

Game3. In this game, we introduce some modifications to avoid the use,oh the
generation of the target ciphertext. In fact, the differences between ugiagd using
a random message can be tapped by a new advedd¥ty>SYM(£5vm) = (AP, AFY™)

who tries to break theND-SYM security of€5¥™ (see 3.1.3).

Game3()

8 —{0,1}

<1U’07 M1, 0) o« Aiym(1£>
sym

9" — Ky & = Enc,i™ (up)
B A (o, k)

—

A WN

AP (1)
1 Tg < empty; Ty < empty
2 (pk,sk) < HE.KeyGen(1¢)
3 b—{0,1}; o — X
4 (mg,my,s) — ATHHHP3(pk)
5 M < Mg
6 o= (7q, Ty, pk,sk,b,z*,s)
7 return (my, m, o)
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A" (0, K¥)
1 (7¢, Ty, pk,sk,b,x*,s) = o
2 y* — ka; c* (fpk(x*’y*)a K’*)
b AQGS,HE},D:SSk,C* (s, ")
ift =0
B0
else
B—1
endif
ﬁ// «— O

© o0 N o aa A W

G3(z)
if xinZ¢; return 7 (z); endif
ifz =a*
7 —{0,1}
ﬁ// —1
exit game
endif
r«— K,
insert(x, r) in table7;
returnr

© 0 N O a »~ W N o=

H3(xz,m)
if (z,m)inTy; return Ty (z, m); endif
if v =a*
g {01}
ﬁ// —1
exit game
endif
< ka
insert((x, m),r) in table7y
returnr

© o N o aa ~A W N =

The only difference in the decryption oracles is thé' is replaced by 3.

In this game, A'NP—SYM(gsvm) has two different ways to guess the valuedof3’
indicates if. ANP—C“A(HE) guesses the correct valuetpfand3” indicates ifS; occurs.
Then, two different advantages can be taken into accolt:[ANP—>YM(gsvm)] =
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2Pr3 [ = 5] — 1| andAdv [ANP-SYM(gsvm)]" = |2Prs [3” = 3] — 1].

If 3 = 1, the value ofn, is used nowhere in the game. So, the viewd8fP~“A(HE)
is independent of andPr; [/ =1 | 8 =1A=S;] = Prs[t/ £#b| B =1A-54] = 3
MoreoverPr; [ =1|3=1AS;] =3, andtherPr; [ =1|3=1] =3

If 6 =0, Game3 and Gaméare identical. Thus

Prs[0/ =0[3=0] =Prs[0' =0AS1|B=0]+Prs[# =0A=S;|5=0]=
zéPrg[Sl|ﬁ:0]+Pr3[b’:b/\ﬁ51|ﬁ:0]:
= %Pl’z [Sl]+Pr2 [501]

Then, combining the preceeding expressions:

Adv [ANP=SYM(gsym)]| = |2Pr3 [8' = 0A B =0]+2Pr3 [# =1 AB=1] -1 =
|Pr3[ﬂ’—0|6—0]+Pr3[ﬁ’—1|6:1]—1|:

= |Pr2 501 —|— PI’Q [Sl 2| = ‘Pl’z [501] — Pr2 [Soo”

If 5" is used instead of’, then

Adv [AND-SYM(gsum)]" — |9Pry [Sy A 8" = B] 4 2Pr3 [<S1 A 87 = B] — 1] =
= 2Pr3[S1AB=1]+2Pr3[-S1 A =0] - 1] =
:|Pr3[51]521]+Pr3[—|51|520]—1|:
= |Prs[S1 | B=1]=Pr3[S1 | 3 =0]| =
= |Pr3 [Sl | 6 = ]_] — Pr2 [Sl”

Finally,

AdV [AIND*CCA(HE)] S PI’Q [Sl] + |PF2 [501] — PI’2 [SOO” + 2Pr [F]
= Pry [S1] + 2Adv [ANP=SYM(gsvm)] 4 9P [F] <
< Pr3[Sy | 5= 1]+ 2Adv [A”\'D —YM(gsvm)] +
+ Adv [AND=SYM(gsym)]” 1 9Py [F]

Game4. Game3 withG = 1 can be modified to obtain an implementation of an ad-
versary, APV trying to break the partial one-waynessfofThis adversary will know
neithersk nor x*. The use otk in the decryption oracle simulator is avoided by using
the deterministic plaintext checking algorithvhfor f. The use ofr* in the random
oracle simulators is also avoided. To do thisjs detected by usiny. In fact, wherS;
occurs, A9V learns the value of* and stores it in’.

Game4()
1 (pk,sk) « HE.KeyGen(1)
2 2" — X " — Yo 2 — fok(@™,y")
3 AT (pk, 2)
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APV (pk, 2)

1
2
3
4

5
6

b— {0,1}

m « My; g* « Ky; ¢« (2,Enc;l™(m))
Tq < empty; Ty < empty

(mo,my, 5) — AP (pk)

b A§4,H4,D4pkyc* (s, ¢)

/
' — Xpk

G4(x)

1
2
3
4
5
6
7
8

if zin7g; return 7o (x); endif
if v € Xpkand V(pk,z,2) =1
' —x
exit game
endif
r<— Kg
insert(x, r) in table7;
returnr

H4(x,m)

1
2
3
4
5
6
7
8

if (z,m)inTy; return Ty (z, m); endif
if v € Xpkand V(pk,z,2) =1
e~
exit game
endif
r <— ka
insert((z,m),r) in table7y
returnr

D4pk(0)

0w N o a b~ W N o=

if c € Zp x My; returnreject,; endif
(c1,¢0) = ¢
foreachzin 74
if v € Xpkand V(pk,z,¢1) =1

g «— Tg(x)

m « Dec;"(cz)

y «— H4(z,m)

if fok(z,y) # c1; returnrejecty; endif
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9 return m
10 endif

e 11 endforeach
12 return reject,

These changes do not modify any probability. Moreover, the view$™t-C“A(HE) in
games 3 (with3 = 1) and 4 are identically distributed. Therefore,

Succ [APOW] = PI’4 [.T, = 33'*] > PI’4 [Sl] = PI’3 [Sl ’ ﬁ = 1}
and, from the above results,

Adv [.A'ND_CCA(HE)} < Succ [.APOW} + 2Adv [A'ND_SYM(gsym)] +

_ sumn1/ 2qpquy 2qp
1 Adv [AIND SYM(gsy )] + K =g V=

In terms of time complexity of the algorithms, the overhead introduced by the sim-
ulation of the random oracle&; and H, into games 3 and 4 can be reduced by using
standard hashing techniques for table insertion and searching. In fact, in almost all
security proofs in the Random Oracle Model in the literature, this time overhead is ne-
glected. It is also supposed that the time needed to cheok if',, x M, andz € X,
is negligible.

Neglecting lower order terms, the running time4t°V in Game4 is bounded by

T[APY] < (¢e+qu +qp +qeqp) T V] +qo (T[f]—i—T[DecSym]) + T[AND—CCA(HE)],

whereT'[V] is the time complexity of the plaintext checking algorithm, &rd] is the
time complexity off. Also, T[AND=SYM(gsym)] — T[AND-CCA(HE)],

Particular cases

Both in the case of the trivial construction of easy verifiable functions, and in the non-
trivial family in Section 3.1.2, the algorithr4,, can be improved without modifying

the behavior of the game to avoid exhaustive seardyinlo do this,(f(z), (z, G(7)))
is stored in another tabl&; for each query: € X, to G4.

G4 (x)
1 ifxinTg; return 7g(x); endif
2 ifx e ka and fpk(fL‘) = 7~Tpk(2’)
e 3 x—x
4 exit game
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endif
< Kg
insert(x, r) in table7;
if x € ka
insert(fy.(z), (x,7)) in tableZg
10 endif
11 returnr

© 0 N o O

Dipk(c)
if ¢ & Zp X My; returnreject; endif
(c1,¢0) = ¢
51 — ﬁEk(cl)
if 61 in TG ~
(5,9) — To()
m — Dec’™(c,)
Y — H4(x m)
if fox(z,y) # c1; returnreject,; endif
returnm
endif
return reject,

© o0 N o g~ W N =

e
= O

The plaintext checking algorithm call td(pk, z, z) is replaced by the condition
fo(z) = 7o(2), afterwardsi,(z) for the targetz can be precomputed by”oV.
Moreover, the same standard hashing techniques used in the simulatiamaf/ can
also be used here to maintalg, so the time overhead of step 41nt ok and step 9 in
G4 can be neglected. Then,

TIAP"] < (g -+ ) TU7)+ a (TUF) + T1R] + T[Dec™]) + TLAMP-SA(HE)
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3.2 Evaluating Elliptic Curve based KEMs in the
light of Pairings

Several efforts have been made recently to put forward a set of cryptographic primi-
tives for public key encryption, suitable to be standardized. In two of them (in the first
place the NESSIE project [Nes03], already finished, and in the second place ISO/IEC
18033 [Sho04]), the KEM-DEM methodology by Cramer and Shoup for hybrid encryp-
tion has been included. Let us recall (cf. Section 1.3.2) that within this methodology,
the problem of designing\ND-CCA hybrid schemes is reduced to designiNg-CCA
KEMs. Three elliptic curve-based KEMs have been considered so far, namely, ACE-
KEM, ECIES-KEM and PSEC-KEM. Their security relies on different problems related
to the discrete logarithm on elliptic curves. PSEC-KEM and ECIES-KEM use the Ran-
dom Oracle (RO) heuristic [BR93] in their security proofs, while ACE-KEM is proven
secure in the standard model but based on the decisional assumption ECDDH. They
were first proposed as KEMs in [Sho01], the ISO standard draft for public key encryp-
tion edited by Victor Shoup, while in their original form they were submitted by IBM,
Certicom and NTT corporations, respectively.

In [Jou00] a special family of curves, namely, elliptic curves with a non-trivial bi-
linear map were found a positive application in cryptography, designing a one-round
tripartite Diffie-Hellmann protocol. A breakthrough in this constructive direction was
made in [BFO1], presenting the most complete and practical identity-based encryption
scheme to the date. Since then, pairings have been found a lot of applications in cryptog-
raphy (see [DBSO04] for a comprehensive account), and its study has become an active
research area.

Our contribution

We revisit the security proof of the elliptic curve-based KEMs when they are performed
over pairing curves. As a result, we show that all these KEMs can be proven secure in
the RO heuristic with respect to the ECDH assumption in a pairing curve, and with a
very tight reduction, improving then the concrete security claimed over a random curve.
It is worth pointing out that although the schemes are implemented over a pairing curve,
and we use efficient pairing computations to obtain the concrete security, no pairing
computation is involved in a real implementation. The crucial point is that ECDDH
problem is solvable in these groups.

Since ECIES-KEM has the best perfomance, we conclude ECIES-KEM is prefer-
able among the others if pairing curves are used. This is noticeable, since when using
a randomly generated curve an opposite result is obtained. In fact, ECIES-KEM has
not been selected in NESSIE, while ACE-KEM and PSEC-KEM have been positively
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evaluated.

On the other hand, using [Mau94] there are elliptic curves where ECDL can be
reduced to ECDH. Then, it is possible to give an exact security result relatinyfhe
CCA security of these KEMs to the ECDL problem. Moreover, they are closely related
due to small security losses in the reduction. Finally, we provide some examples of
pairing curves where the schemes can be implemented.

3.2.1 Security properties of existing elliptic curve based
KEMs

In the following, we summarize the security properties of the KEMs discussed, as well
as their performance and the evaluation presented in the NESSIE project. We be-
gin with a schematic description of these algorithms. A description?, p), where

(E,G, P,p,Q,u) «— IES, is added to the security parameter in the input to the key

rand?

generation algorithm in these KEMs.

(pk, sk) < KeyGen(E, P,p,1%) | (K,C) « Enc(pk) K « Dec(C, sk)
L w,x,y,2 «— Z;, Lor—17Z; 1. Parse C as (C1,C5,Cs)
2. W:=wP, X :=zP, 2. Cy:=rP 2. a:= Hash(C1||Cs)
Y :=yP, Z :=2zP 3. Co:=1rW 3. t:=z+ya
3. pk:=(E,Pp,W, X, Y, Z)0) | 4. Q :=rZ 4. If Cy # wCh,
4. sk := (w,z,y, z, pk) 5. a:= Hash(C1||C5) output reject and halt
5. Output (pk, sk) 6. C3:=rX +arYy 5. If C5 # tChy,
7. C:=(C1,05,C3) output reject and halt
8. K := KDF((1]|Q) | 6. Q := 2C4
9. Output (K,C) 7. K:=KDF((1]|Q)
8. Output K
Description of ACE-KEM
(pk,sk) < KeyGen(E, P,p,1°) | (K,C) « Enc(pk) K «— Dec(C,sk)
1. s 17, l.r—1Z, 1. Q:=sC
2. W:=sP 2. C:=rP 2.fQ=0
3. pk:=(E,P,p,W,{) 3. Set x the output reject and halt
4. sk := (s, pk) x-coordinate of W | 3. Set x
5. Output (pk, sk) 4. K = KDF(C||x) x-coordinate of rW
5. Output (K, C) 4. K = KDF(C||z)
5. Output K

Description of ECIES-KEM
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(pk, sk) « KeyGen(E, P,p,1°) | (K,C) « Enc(pk) K — Dec(C,sk)
l.s—1Zj; L. r«{0,1}¢ 1. Parse C as (Cy,Co)
2. W:=sP 2. H := KDF(032]|r) 2. Q:=sCy
3. pk:=(E, P,p,W,{) 3. Parse H as t||K 3. r:=Cy® KDF(1||C1]|Q)
4. sk := (s, pk) 4. o :=tmodp 4. H := KDF(0||r)
5. Output (pk, sk) 5. Q:=alW 5. Parse H as t||K
6. C; :=aP 6. a:=tmodp
7. CQ :T’@KDF(LgQHClHQ) 7. IfC’17£ozP,
8. C:=(C4,Cy) output reject and halt
9. Output (K,C) 8. Output K

Description of PSEC-KEM

A so-calledkey derivation functionk DF' has been used in these KEMs. This
function can be considered as a hash function for our purposes (for further details see
[Sho04]). In Table 3.1 we summarize the exact security results known for the KEMs
we are interested in, along with the reference where these results come from. In these
expressionsy denotes the number of queries made to the KDF ordglds the time
needed to check a Diffie-Hellman triple @, andSR, is the time needed to compute a
square root modulg. We point out that in the ECIES-KEM security reduction claimed
in [Den02b], the authors do not take into account the time to compute a square root
in IF,, which is needed in order to obtain the two pointsA(IF,) that have a given
x-coordinate.

Scheme Assumption | Reduction Random | Reference
Oracle
ACE-KEM ECDDH very tight No [CS]
Gap-ECDH | ¢/ ~ ¢ Yes [Sho01]
t' ~t+qix(2Lg + SRy) [Den02b]
ECDH Not tight Yes [Sho00]
ECIES-KEM | Gap-ECDH | ¢/ = ¢ Yes [Den02b]
t' ~t+qx(2Lc + SRy)
PSEC-KEM | ECDH e~ — Yes [ShoO1]
o t‘]D aK

Table 3.1: IND-CCA KEMs concrete security over a random curve

As we can see, ACE-KEM offers several possible concrete security estimates, de-
pending on which problem its security is based. In the case of the NESSIE evaluation
the emphasis is put on the ECDDH problem, since the claimed security is achieved in the
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standard model. On the other hand, ECIES-KEM presents a very tight reduction to the
gap-ECDH problem, while PSEC-KEM has a not tight reduction to the ECDH problem.
Both schemes are analysed with the RO heuristic. In Table 3.2 we have the parameter
lengths in bytes for @ IND-CCA security bound in each scheme. To compute them,

it is assumed that ECDDH, Gap-ECDH and ECDH problems have comparable security
to the ECDL problem in a random curve. Although this is widely believed, we empha-
size that thesare extra assumptionsBoth ACE-KEM and ECIES-KEM use a group

G with ap ~ 2% cardinality, while PSEC neegs~ 22%°. This important difference
arises from the not tight reduction in the security proof of PSEC-KEM. We notice that
NESSIE parameter length estimation for PSEC is not exact (it is stated that a 160-bit
prime is enough), and we argue it in Section 3.2.5.

Scheme Operations | Operations | (K, C) length | Public key | Secret key
in Enc in Dec 16-Byte Keys length length
ACE-KEM 5 3 76 80 80
ECIES-KEM 2 1 36 20 20
PSEC-KEM 2 2 67 35 35

Table 3.2: Performance features over random curves (byte lengths using a point com-
pression technique)

In terms of performance, ECIES is clearly the best option. Not only does it present
the smallest computation time, but also the smallest parameter length. However, since its
security is based on a quite new assumption, NESSIE refused to propose standardizing
ECIES-KEM, while accepted ACE-KEM and PSEC-KEM, since these schemes base its
security on well studied assumptions. In the next section we argue that, if pairing curves
are used, this conclusion is no longer valid. Moreover, we provide evidence that in this
case ECIES-KEM arises as the best candidate.

3.2.2 Security analysis over pairing curves

Let E(F,) be the group of points of an elliptic curve over the prime finite figjdLet
G = (P) be a cyclic subgroup oF/(F,) with p elements, wherg is a large prime. Let
G be a cyclic group witlp elements. We say thdf is apairing curve overF, with
respect ta5 if there exists amap : G x G — G with the following properties:

1. Bilinear: thatis,e(uP,vQ) = e(P,Q)"", for all P, € G and allu,v € Z.

2. Non-degenerate: The map does not send all pairsGhx G to the identity inG.
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3. Computable: There is an efficient algorithm to computéP, Q) for any P, Q €
G.

We call them pairing curves because the usual way to implement the masing the
Weil or Tate pairings [Men93]. In this case, the grdi@ps the multiplicative group of
a certain finite extensioR .. The numbett is called theembedding degreand is the
smallest positive integer such thadt¢® — 1).

Let (E,G,P,p,Q,s) — IN (1Y) be a PPT algorithm sampling pairing curves
and providing a PPT algorithm computing the mapWe denote with the superindex
pairing the elliptic curve hard problems defined in Section 1.4.2 with respaffgﬁgg.

For instanceECDLP2""¢ stands for the elliptic curve discrete logarithm with respect to
a keypair generatdf.C, .. In contrast, the absence of superindex denotes the parameters
haven generated at random (c.f. Section 1.4.2).

With such a map, thECDDHP*""¢ problem is solvable ii;. The non-degeneracy
property of the Weil and Tate pairings implies th&®, P) is p-th root of unity, and
then (P, uP,vP,wP) is a valid Diffie-Hellman quadruple if and only i(uP,vP) =
e(P,wP). It turns out then that the GapCDHP*""8 and ECDHP*""¢ problems are
polynomial time equivalent irtz, since there exists a polynomial time algorithm re-
placing theECDDHP*""e oracle solver. We use this fact positively to tightly relate the
security of ACE-KEM, ECIES-KEM and PSEC-KEM to ti&CDHP*""¢ problem.

Another consequence of the maps that solvingECDLP""¢ problem inG can
be transformed into solving the DL problem over the finite figld, which can be
computed using an index calculus algorithm running in subexponential time. This has
been applied to attack the ECDL problem over supersingular curves in [MOV93, FR94].
We should take this into account when computing secure key sizes for each scheme.

Revisiting concrete security with respect to ECDH

We already know that in pairing curves GEDHP*""¢ and ECDHP*""¢ problems

are equivalent. According to the results summarized in Table 3.1, this implies that
ACE-KEM and ECIES-KEM are straightforward secure with respect ta&@HBHP""&
problem. Indeed, they present a very tight reduction t&Xa®HP>""¢, and the concrete
security estimation is obtained by replacihg by doubling the time needed to compute
the mape, which will be denoted by..

In the case of the PSEC-KEM security proof in [ShoO1], the solver of the ECDH
problem makes use of(& qp, qx, €) adversary against the IND-CCA security of PSEC-
KEM to generate a list of , + gx elements containing the solutiam P to the instance
(P,uP,vP) with probability roughlys. Since the ECDDH problem is assumed to be
intractable, we were forced to output an element of the list chosen uniformly at random,
so the probability was decreased by a fagior ¢x. The reduction was then not tight.
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Since in a pairing curv&CDDHP""8 js efficiently solvable, we can find the correct
valueabP by testing the entries on the list, obtaining thus a solvét@DHP>""¢ with
probability roughlys within time ¢ + 2(qx + ¢p)T.. Therefore, PSEC-KEM presents a
very tight security reduction, allowing the use of shorter ciphertexts for the same level
of security in a random curve, as we shall see below. In Table 3.3 these concrete security
results are summarized.

Scheme Assumption | Reduction
ACE-KEM CDH e r~e

t' ~ t+ qx (4T, + SRy)
ECIES-KEM | CDH e =~e

t'~t+qx (4T, + SRy)
PSEC-KEM | CDH e ~e

t' ~t+2(gx +qp)Te

Table 3.3: Security results over a pairing curve

Hardness of the ECDHP*"'"¢ problem

When working with pairing curves we are dealing with a special family of elliptic
curves, and then “some randomness” is lost with respect to the original random parame-
ters generation algorithm in these KEMs. Therefore RA®HP""¢ problem could be
easier to solve than the ECDH problem. The following question then arises: Must we
trust the hardness of the ti&CDHP2"'"8 problem? We answer this question positively
from two points of view. On the one hand, we take into account the current status of
pairing curves in cryptography research. As the survey [DBS04] shows, they are being
intensively applied by the cryptographic community to design new appealing protocols.
The new problems arising in these protocols can be reduc&CioHP* "¢, Conse-
quently, the trustness on these new assumptions implies trustness BOTHE>"""e
assumption.

On the other hand, using a technique due to Maurer [Mau94], it is possible to gen-
erate certain pairing elliptic curves with a cyclic grotggor which ECDH and ECDL
problems are equivalent. The basic idea is to transport computing ECDLtancom-
puting ECDL in an auxiliary group whose number of points has a suitable smoothness
boundB. Inthe latter, the computation of DL can be carried out with a generic algorithm
on subgroups of small size. The running time of this reductid?(i8 - (log(p)?) group
operations inG and field operations iff, and O(log(p)?) calls to the ECDH solver
for G [MWOO]. Since no attacks (different from Pollapdnethod) againgECDLP""e
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with a suitable embedding degree have been found, this theoretical equivalence gives a
good indication of the hardness of tR€ DHP*'""& problem.

3.2.3 Efficiency analysis over pairing curves
Computing the security parameter

Let us assume that tHD-CCA security of any of these KEMs {3, ¢p, ¢k, £)-broken

by some adversaryl. Since this adversary can be run repeatedly (with the same input
and indepedent internal coin tosses), the expected time to distinguish a real encapsula-
tion from random with advantage roughly 1ti&. Thus, the security parameter of the
scheme isikpn = log(t/) = n + m, wheren = logt andm = log(1/¢).

Usually, ¢p < 2% (that is, up to one billion decryption queries are allowed), and
gx <t = 25. We also consider that evaluating a KDF function is a unit operation (that
is, takes the same time as a 3-DES encryption). Using Miller’s algorithm, computing
a pairing inE(F,) with embedding degrekle can be done i©(k log ¢) multiplications
in F, (cf. [Men93]), while computing a square root modyldakes at mosO(log? q)
multiplications inlF, (cf. [Coh93]). Assuming that a multiplication I, takes 10 times
longer than one hash query, and that 10, we obtain

tooms ~ T+ 2% - 102 (4log g + log? ¢) ~ 2" + 27 - log? ¢
for ACE and ECIES-KEM, and
thepe =t +2°0-10% - logq ~ 2" + 2% - logq

for PSEC-KEM. In the following, we compute the exact security onlytfer 25 for
ECIES-KEM and PSEC-KEM, since the result for ACE-KEM is equal to the former.
Settingm = 0 andn = 80, we obtainngcigs = 80 (respectivelynpspc = 80), that

is, a2% security level in each scheme. Let us compute the minimal parameter length
to obtain this security level. An advantage roughly 1 in the IND-CCA game implies
that the solver computes CDH succesfully with probability roughly 1 in ting,
(respectivelytpbop). Assuming thatg| ~ 200, then

thorms = 2%0 42022 and  tpgpe A 2%0 4203 28,

Both reductions are pretty meaningful and then, to @&t aecurity level on any of these
KEMSs a groupG is enough with at least 28 security of theECDHP*""8 problem. If

we make thedditional assumptiothat theECDHP*""& andECDLP*"" problems have
comparable security, then we need a gréupith 149 < |p| < 165 following [LVO1].

In the case of PSEC, this is a great improvement compared to a length of roughly 280
bits needed over a random curve.
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Furthermore, using a technique due to Maurer [Mau94], one can build certain pair-
ing elliptic curves with a cyclic grougs for which ECDH and ECDL problems are
equivalent. As was claimed in the previous section, the running time of this reduction is
O(B - (log(p)?) group operations id and field operations iif,, and O(log(p)?) calls
to the CDH solver folz [MWO0O]. Since in our case the computationfEDHP" " in-
stances is by far the most expensive operation, the reduction B(tbé."*""& problem
can be carried out with 8% factor decrease in security for all three schemes, there-
fore with a total time of2%° - 223. Due to this somewhat small factor, the security of
the scheme and tHeCDLP*""& problem are tightly related. This allows us to conclude
that all three KEMs achieve provable security in the RO model, wittethéND-CCA
bound, in a groug with a 2'% security of theECDLP*""& problem, provided that the
DL to CDH reduction of [Mau94] holds for this group.

Curves Related Assumptions Minimal
Problem security level

Pairing curves ECDHP" | RO 280

Maurer pairing curves | ECDLP*" | RO 2103

Table 3.4: Discrete log KEMs for the 280 security bound

Performance

It is now time to study the performance of each scheme over pairing curves. Since
all three security reductions are very tight, we have seen ti28t #8ND-CCA secu-
rity is achieved under a* security level for thé@CDHP*""¢ problem. Assuming that
ECDHP*""& and ECDLP?""¢ problems have comparable security, and that the embed-
ding degree is large enough to keep the DL infeasibilityf jn (in which case, the best
attack known is to use the Pollapdnethod inG), a pairing curveE (F,) with a group
G with |p| ~ 160 is needed. However, as explained in the next section, the state of the
art in pairing curves prevents us from claiming thatx |q|, but|p| < |¢| < 2|p|. The
performance comparison among the three KEMs will be stated then in bit units and in
terms of the size of. The results are presented in Table 3.5.

In the following section we present some pairing curves where |¢| ~ 160. With
these values, the performance features of ACE-KEM and ECIES-KEM are equivalent to
those of Table 3.2, while in PSEC-KEM(, C') length is reduced from 67 to 56 bytes,
and public/secret keys are reduced from 35 to 20 bytes, thus obtaining a great improve-
ment. From these values, we easily see that ECIES-KEM presents the best performance
in every feature. Since all three KEMs base their security on the same problem, that is,
the ECDHP*""& problem, we conclude that ECIES-KEM should be considered the best



3.2. EVALUATING ELLIPTIC CURVE KEMS 93

Scheme Operations | Operations | (K,C) length | Public key | Secret key
in Enc in Dec 16-Byte Keys length length
ACE-KEM 5 3 128 + 3q| 4|q| 4 |q|
ECIES-KEM 2 1 128 + |q] la] la]
PSEC-KEM 2 2 128 + 2|q| lq] |q|

Table 3.5: Performance features over pairing curves with 280 security (bit lengths using
a point compression technique)

option among these KEMs over pairing curves.

3.2.4 Examples of pairing curves

In the following we propose some curves in which the schemes can be performed, and
we also discuss why they are suitable. Our aim is to give some examples of pairing
curvesE(F,) to perform the schemes and where B@DHP*""¢ problem is assumed to

be hard. We start by describing the conditions that a candidate curve must hold. In the
first place, we want pairing curves with small embedding degré&®order to obtain an
efficient pairing computation. However, we cannot use too small embedding degrees:
we must take into account that the fidfigk has to be large enough to fit into the required
security level. In our case, we are looking fo2® security level of the DL problem,
which corresponds to024 < |¢*| < 1464, according to the estimates by Lenstra and
Verheul [LVO1] and the parameters used nowadays.

Unfortunately, curves with small embedding degree are extremely rare, as shown in
[BK98]. An exception are supersingular elliptic curves [Men93], which have 6.
However, inasmuch as we are looking for small security parameters, only supersingular
elliptic curves withk = 6 can fit our purpose. Nevertheless, it is not easy to generate
such curves over prime finite fields, and the popular constructions use thefie(df.
[Gal01]).

Following [Gal04], an algorithm for generating curves with arbitrargnd with a
large prime factop of any form is proposed in [CPO1]. Although it solves the em-
bedding degree problem, it has the drawback that it produces curves with®. For
instance, this means that fér = 10 and [p| ~ 160, the algorithm returns a curve
E(F,) with |¢| > 320. It is an active area of research to obtain pairing curves in which
lq| =~ |p| andk > 7. First steps in this direction have been taken, for instance, in
[DEMO02, BW03, SB04]. From [SB04] we take two curves with= 6; from the indi-
cations in Section 4.1 in [BWO03] and from [Gal01] we derive three curves with7,
which can be used to implement the schemes. These curves are presented in Table 3.6.
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E.»(Fy) : Vv=a34+ar+b |Gl=p

6
801819385093403524905014779542892948310645897957 (160 bits)

-3

237567233982590907166836683655522398804119025399
801819385093403524905015674986573529844218487823 (160 bits)

6

4691249309589066676602717919800805068538803592363589996389 (192 bits)
-3

3112017650516467785865101962029621022731658738965186527433
2345624654794533338301358959942345572918215737398529094837 (192 bits)
12

92023287709027882526875031742688685992195575554407985826771/
85608987307 (233 bits)
9202328770902788252687503174268868433066055296961210513155803123/
268268

166153502257875125152959677950069761
91343854374875651026643947426601579968226918401 (157 bits)

10

21359906007365701929042154038677772262650043848653969045852/
74435305514681762435224264786397102081 (320 bits)

70368760954882

2923005713806642693340194162793958655650818949120
24519952037889827157137792820712629242745475072115343361 (185 bits)

6

3163 (259 bits)

1

1

5898811514266587408542277255807363488506406322973734140/
91790995505756623268837 (259 bits)
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Table 3.6: Curves to implement KEMs equivalent to ECDHP2""&

A major breakthrough in the efficient implementation of these KEMs would be to
find methods to generate pairing curves with embedding degree at leastql angh| .
In this case, using ECIES-KEM over pairing curves should be suitable not only for pair-
ing cryptographic environments, but also for medium level security settings with con-
strained computing and memory capabilities. This is likely the case for many embedded
systems, such as smart cards.

3.2.5 PSEC parameter length over a random curve

In the sequel we fix the NESSIE parameter length estimation for PSEC. We use the
notation introduced in Section 3.2.3. Let us assume the IND-CCA security of PSEC-
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KEM is (t, ¢p, g, €)-broken by some adversag. Then the security parameter of the
scheme is, = log(t/e) = n + m, wheren = logt andm = log(1/¢), andgp < 23°,
qx < 299, The concrete security reduction for PSEC-KEM over a random cur(e-is
ande’ ~ —=—. Settingm = 0 andn = 80 (that is, a2®" security level in the scheme),

4Dtk "’
we obtain

' ~t=2% and & =~1/2%=2"9

From the last expression, an advantage roughly 1 in the IND-CCA game implies that
the solver computes ECDH succesfully with probability rought{® in time ¢’ = 28°.
However, an algorithm solving ECDH with probability roughly 1 is needed to find the
parameter length. Running this algorithm with independent internal coin t@8%es
times and returning the most frequent answer, ECDH is solved with probability roughly
1. The computational effort needed to do thigis. 280 = 2140, Assuming that ECDH

and ECDL problems have equivalent hardness over a random elliptic curve, we conclude
that PSEC-KEM needs a subgrotpwith |p| ~ 280, since the best attack known is
using the Pollargh method.
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Appendix A

In this appendix, we compute the number of poifitsy) € Z, x Z; such thatr # x

(- )

where(z,y) € D, is the unique point such tha#(x, y) = 2#(z, y).
From observation 68z, y) = (x,y) + (n,0) and by the addition formula

- ( Y )2 3 —n 2 +nx +n? T+ 2n
T = —rT-N= 5 T N=———————— — T —1N=1
r—n (z —n) T —n r—n
and
7= (n—17)= (1_x+277)_ 30y
T —1 T —1 T —1 (x —n)?
Then, dividing both equations
T (z+2n)(x—mn) =x
t:— :p—
y 3ny (]

wherep is a fourth root of unity. This equation is equivalentior2n)(x—n) = —3pnz,
that means is a root of the polynomial equatidm + 2n)*(x —n)* = 815*z*. So, there
are at most 8 different values af givenrn. Moreover, there are at most 16 points
(z,y) in each curveE, (0, b) satisfying the conditions at the beginning of this appendix.
Finally, the probability that one of these points is guessed at random is at st

A tighter bound for this probability can be obtained if the second order equation
(x 4+ 2n)(x —n) = —3pnx is discussed for each value pfLett = 2:/n. The equation
can be rewriten a§ + 2)(t — 1) = —3pt, and also a$> + (1 + 3p)t — 2 = 0. The
discriminant of the equation i& = (1 + 3p)? +8 = 9p® + 6p + 9.

Sincep = 1mod 4, (*71) = 1 and there are 4 different values @f 1, —1 and the
two square roots of-1. Moreover, sincey = 5mod 12 then(?) = —1 and(3) = 1if
and only ifp = 1 mod 8.
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Taking this into account, ip = 1 thenA = 24, that is a quadratic residue only if
p =5modS8. If p = —1thenA = 12 that is not a quadratic residue. Finallypff = —1
thenA = 6p. But . )
(£) = p"= = (=1)"% modp

that is equal to 1 if and only i = 1 mod 8. This implies thaRp is always a quadratic
residue, s@p never is.

Summing up previous stuff, the only valuestofome up wherp = 5mod 8 and
p = 1. This two values are= —(2++/6). Now,z = nt andy® = 2° —n> = n3(t> - 1).
From that, for each value df only ’%1 values ofn lead to existing values qf. Itis
easy to see that there are exaetly — 1) points(z, y), but onlyp — 1 are inD,,.

This last step follows from a symmetry argument. In all equatidnsy) and
(z,y) play a symmetric role, sincér,y) = (z,y) + (n,0) is equivalent to(z,y) =
(z,9) + (n,0). But(z,y) € D, and(z,y) ¢ D,. Thus, only half of the solutions found
correspond to values @f, y), and the other half correspond o, 7).



Bibliography

[AM93]

[BBP04]

[BD9Y]

[BDHG99]

[BDPR9S]

[Belog]

[BFO1]

[BG85]

[BK9S]

A.O.L. Atkin and F. Morain. Elliptic curves and primality provinglathematics
of Computation61:29-67, 1993.

M. Bellare, A. Boldyreva and A. Palacio. An uninstantiable Random-Oracle-
Model scheme for a hybrid-encryption problem. Advances in Cryptology —
EUROCRYPT ' 2004vol. 3027 ofLecture Notes in Computer Scienpg. 449—
461, 2004.

D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than
n%292 " In Advances in Cryptology — EUROCRYPT ’ 1996I. 1592 ofLecture
Notes in Computer Sciengep. 1-11, 1999.

D. Boneh, G. Durfee and N.A. Howgrave-Graham. Factoring p"q for large
r. In Advances in Cryptology — CRYPTO ' 199®l. 1666 ofLecture Notes in
Computer Sciencep. 326337, 1999.

M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among notions
of security for public-key encryption schemes. Advances in Cryptology —
CRYPTO 1998v0l. 1462 ofLecture Notes in Computer Scienpp. 26—45, 1998.

M. Bellare. Practice-oriented provable-security.1bt. International Workshop
on Information Security (ISW 9,7yol. 1396 ofLecture Notes in Computer Sci-
ence pp. 221-231, 1998.

D. Boneh and M. Franklin. Identity-Based encryption from the Weil pairing. In
Advances in Cryptology — CRYPTO ’,0/bl. 2139 ofLecture Notes in Computer
Sciencepp. 213-229, 2001.

M. Blum and S. Goldwasser. An efficient probabilistic public-key encryp-
tion scheme which hides all partial information. Advances in Cryptology —
CRYPTO ' 1984vol. 196 ofLecture Notes in Computer Sciengp. 289-302,
1985.

R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve
has subexponential discrete log problem under the Menezes-Okamoto-Vanstone
algorithm. Journal of Cryptology11(2):141-145, 1998.

99



100

[BLOG]

[Ble9s]

[Bon99]

[BR93]

[BRI5]

[Bre9s]

[BSS99]

[BV9S]

[BWO3]

[Cer00a]

[Cer00Db]

[CGHO98]

BIBLIOGRAPHY

D. Boneh and R.J. Lipton. Algorithms for black-box fields and their application
to cryptography (extended abstract). Advances in Cryptology — CRYPTO ’
1996 vol. 1109 ofLecture Notes in Computer Scienpg. 283—297, 1996.

D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. Advances in Cryptology — CRYPTO 1998I.
1462, pp. 1-12, 1998.

D. Boneh. Twenty years of attacks on the RSA cryptosysimtices 46(2):203—
213, 1999.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. IRroceedings of the 1st ACM CO&. 62—-73. ACM
Press, 1993.

M. Bellare and P. Rogaway. Optimal asymmetric encryption — how to encrypt
with RSA. InAdvances in Cryptology — EUROCRYPT 19¢dl. 950 ofLecture
Notes in Computer Sciengep. 92—-111, 1995.

R.P. Brent. Some integer factorization algorithms using elliptic cuAwstralian
Computer Science Comunicatiopg. 24—-26, 1998. Republished 1998.

I.F. Blake, G. Seroussi and N. Smé&tiptic Curves in Cryptographyvol. 265 of
London Mathematical Society Lecture Note Seriéambridge University Press,
1999.

D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring.
In Advances in Cryptology — EUROCRYPT ' 1998l. 1233 ofLecture Notes in
Computer Scien¢gp. 59-71, 1998.

F. Brezing and A. Weng. Elliptic curves suitable for pairing based
cryptography. Cryptology ePrint Archive, Report 2003/143, 2003.
http://eprint.iacr.org/.

Certicom. SEC1: Elliptic Curve Cryptography, 2000. Standards for Efficient
Cryptography Group, September 2000. Availablewi. secg. org.

Certicom. SEC2: Recommended Elliptic Curve Domain Parameters, 2000.
Standards for Efficient Cryptography Group, September 2000. Available at

WWW.Secg.org.

R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, re-
visited. InProceedings of the 30th Annual Symposium on Theory Of Computing
(STOC) pp. 209-218. ACM Press, 1998.



BIBLIOGRAPHY 101

[CGHNO1] D. Catalano, R. Gennaro, N. HowgraveGraham and P. Nguyen. Paillier’s cryp-
tosystem revisited. IProceedings of the 8th ACM CCBp. 206-214. ACM
Press, 2001.

[CHJ99] D. Coppersmith, S. Halevi and C. Jutla. 1SO 9796-1 and the New Forgery Strat-
egy. Presented at the Rump session of Crypto’ 99, 1999.

[CHJT02a] J.Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval and C. Tymen. GEM:
a generic chosen-ciphertext secure encryption methodCTHRSA 2002vol.
2271 ofLecture Notes in Computer Scienpg. 263-276, 2002.

[CHJT02b] J. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval and C. Tymen. Op-
timal chosen-ciphertext secure encryption of arbitrary-length messag&an
2002 vol. 2274 ofLecture Notes in Computer Scienpg. 17-33, 2002.

[CNS99] J.S. Coron, D. Naccache and J.P. Stern. On the security of RSA padding. In
Advances in Cryptology — CRYPTO 1998I. 1666, pp. 1-19, 1999.

[CNSO02] D. Catalano, P.Q. Nguyen and J. Stern. The hardness of Hensel lifting: The case
of RSA and discrete logarithm. ladvances in Cryptology — ASIACRYPT 2002
vol. 2501 ofLecture Notes in Computer Scienpp. 299-311, 2002.

[Coh93] H. Cohen. A Course in Computational Algebraic Number Theorgl. 138 of
Graduate Texts in MathematicSpringer, 1993.

[Cop96] D. Coppersmith. Finding a small root of a univariate modular equatioAdin
vances in Cryptology — EUROCRYPT 1996l. 1070 ofLecture Notes in Com-
puter Sciencepp. 155-165, 1996.

[CPO1] C. Cocks and R.G.E. Pinch. Identiy-based cryptosystems based on the Weil pair-
ing, 2001. Unpublished manuscript.

[CS] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. To appear
at SIAM Journal of Computing. Available atwww . shoup.net.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attaclAdirances in Cryptology —
CRYPTO 1998v0l. 1462 ofLecture Notes in Computer Scienpp. 13—-25, 1998.

[CS02] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption.Attvances in Cryptology —
EUROCRYPT 20Q2r0l. 2332 ofLecture Notes in Computer Scienpp. 4564,
2002.

[DBSO04] R. Dutta, R. Barua and P. Sarkar. Pairing-based cryptography : A survey. Cryp-
tology ePrint Archive, Report 2004/064, 20Q#%tp://eprint.iacr.org/.



102

[DDN91]

[DEMO2]

[Den02a]

[Den02b]

[Den03]

[DKO02]

[EPQ]

[FO99]

[FOO01]

[FOPSO01]

[FR94]

[Gal01]

[Gal02]

[Gal04]

BIBLIOGRAPHY

D. Dolev, C. Dwork and M. Naor. Non-malleable cryptography. In ACM, editor,
Proceedings of the 23rd ACM Symposium on Theory of Compuim&42-552.
IEEE Computer Society Press, 1991.

R. Dupont, A. Enge and F. Morain. Building curves with arbitrary small mov
degree over finite prime fields. Cryptology ePrint Archive, Report 2002/094,
2002.http://eprint.iacr.org/.

A. W. Dent. An implementation attack against the EPOC-2 public-key cryptosys-
tem. ELECTRONICS LETTERS8(9):412-413, 2002.

A.W. Dent. ECIES-KEM vs. PSEC-KEM. Technical Re-
portNES/DOC/RHU/WP5/028/2, NESSIE, 2002.

A.W. Dent. A designer’s guide to KEMs. IMA Int. Conf. 2003 vol. 2898 of
Lecture Notes in Computer Scienpg. 133-151, 2003.

H. Delfs and H. Knebl. Introduction to Cryptography. Principles and Applica-
tions. Springer-Verlag, 2002.

EPOC. Efficient Probabilistic Public-Key Encryption
http://info.isl.ntt.co.jp/epoc/.

E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. ladvances in Cryptology — CRYPTO 1996I. 1666 of
Lecture Notes in Computer Scienpp. 537-554, 1999.

E. Fujisaki and T. Okamoto. A chosen-cipher secure encryption scheme tightly
as secure as factorint£ICE Trans. Fundamental&£84-9(1):179-187, 2001.

E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern. RSA-OAEP is secure under
the RSA assumption. IAdvances in Cryptology — CRYPTO ' 200bl. 2139 of
Lecture Notes in Computer Scienpp. 260-274, 2001.

G. Frey and H.G. &k. A remark concerning-divisibility and the discrete log-
arithm problem in the divisor class group of curvieathematics of Computation
62:865—-874, 1994.

S. Galbraith. Supersingular curves in cryptographyddmances in Cryptology —
ASIACRYPT 20QYol. 2248 ofLecture Notes in Computer Scienpp. 495-513,
2001.

S. Galbraith. Elliptic curve Paillier schememkurnal of Cryptology15(2):129—
138, 2002.

S. Galbraith. Pairings, 2004. Unpublished manuscript.



BIBLIOGRAPHY 103

[GHO9]

[GLM*+04]

[GLNO2]

[GM84]

[GMMV02]

[GMMV03a]

[GMMVO03b]

[GMMVO03c]

[GMMV04]

[GMTVO04]

[GMVO04]

[Gol93]

G. Gong and L. Harn. Public-key cryptosystems based on cubic finite field ex-
tensions.|EEE Transactions on Information Theo®5(7):2601-2605, 1999.

R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali and T. Rabin. Al-
gorithmic tamper-proof (ATP) security: Theoretical foundations for secu-
rity against hardware tampering. [hRheory of Cryptography Conference,
TCC 2004 vol. 2951 of Lecture Notes in Computer Sciencgp. 258-277,
2004. An on-line version is available at the Cryptology ePrint Archive at
http://eprint.iacr.org/2003/120/.

O. Goldreich, Y. Lustig and M. Naor. On chosen ciphertext security of
multiple encryptions. Cryptology ePrint Archive, Report 2002/089, 2002.
http://eprint.iacr.org/.

S. Golwasser and S. Micali. Probabilistic encryptidournal of Computer and
System Science28:270-299, 1984.

D. Galindo, S. Marin, P. Morillo and J. L. Villar. A practical public key cryp-
tosystem from Paillier and Rabin schemes.PIRC 2003 vol. 2567 ofLecture
Notes in Computer Sciengep. 279-291, 2002.

D. Galindo, S. Maiin, P. Morillo and J. L. Villar. Easy verifiable primitives and
practical public key cryptosystems. I8C 2003 vol. 2851 ofLecture Notes in
Computer Sciencep. 69-83, 2003.

D. Galindo, S. Malfin, P. Morillo and J. L. Villar. An efficient semantically se-
cure elliptic curve cryptosystem based on KMOV.Iibernational Workshop on
Coding and Cryptography WCC 2003p. 213-221, 2003.

D. Galindo, S. Matrin, P. Morillo and J. L. Villar. AnIND-CPA cryptosystem
from Demytko’s primitive. In2003 IEEE Information Theory Workshopp.
167-170, 2003.

D. Galindo, S. Marin, P. Morillo and J. L. Villar. Fujisaki-Okamoto hybrid en-
cryption revisited. International Journal of Information Security2004. Full
version of [GMMVO03a]. To appear.

D. Galindo, S. Marin, T. Takagi and J. L. Villar. A provably secure elliptic curve
scheme with fast encryption, 2004. Submitted.

D. Galindo, S. Maifin and J. L. Villar. Evaluating elliptic curve based KEMs in
the light of pairings, 2004. Submitted.

O. Goldreich. A uniform-complexity treatment of encryption and zero-
knowledge.Journal of Cryptology6(1):21-53, 1993.



104 BIBLIOGRAPHY

[Gol01] 0. GoldreichFoundations of Cryptography - Basic TooS8ambridge University
Press, 2001.
[GTO3] S. Goldwasser and Y. Tauman. On the (in)security of the Fiat-Shamir paradigm.

In FOCS 2003IEEE Computer Society, pp. 102—, 2003.

[HG99] N.A. Howgrave-Graham.Computational Mathematics Inspired by RSRhD
thesis, University of Bath, 1999.

[HGO1] N.A. Howgrave-Graham. Approximate integer common divisorsCahC, vol.
2146 ofLecture Notes in Computer Scienpg. 51-66, 2001.

[HU79] J. Hopcroft and J. Ullmarintroduction to automata theory, languages, and com-
putation Reading, Massachusetts Addison-Wesley, 1979.

[IEE99] IEEE P1363/D13. Standard specifications for pub-
lic key cryptography, 1999. Last preliminary  draft
http://grouper.ieee.org/groups/1363/P1363/draft.html. The
approved standard is IEEE P1363-2000.

[JNO3] A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Diffie-
Hellman in cryptographic groupsournal of Cryptology16(4):239—-247, 2003.

[Jou00] A. Joux. A one round protocol for tripartite Diffie-Hellman.ANTS 2000vol.
1838 ofLecture Notes in Computer Scienpp. 385-394, 2000.

[Jou02] A. Joux. The Weil and Tate pairings as building blocks for public key cryptosys-
tems. INANTS 2002vol. 2369 ofLecture Notes in Computer Scienpe. 20-32,
2002.

[JQYO01] M. Joye, J.J. Quisquater and M. Yung. On the power of misbehaving adversaries
and security analysis of the original EPOC am-RSA 200vol. 2020 ofLecture
Notes in Computer Sciengep. 208-222, 2001.

[KJJ99] P. Kocher, J. Jaffe and B. Jun. Differential power analysigdivances in Cryp-
tology — CRYPTO ' 99vol. 1666 ofLecture Notes in Computer Scienqap.
399-397, 1999.

[KMOV91] K. Koyama, U.M. Maurer, T. Okamoto and S.A. Vanstone. New public-key
schemes based on elliptic curves over the &g In Advances in Cryptology
— CRYPTO 1991vol. 576 ofLecture Notes in Computer Sciengp. 252266,
1991.

[KMVOO0] Neal Koblitz, Alfred Menezes and Scott A. Vanstone. The state of Elliptic Curve
Cryptography.Designs, Codes and Cryptograph{£/3):173-193, 2000.



BIBLIOGRAPHY 105

[Kob92]

[Koc96]

[KTO3]

[LVO1]

[LZ94]

[Mau94]

[Men93]

[MOV93]

[MRO4]

[MVOV97]

[MWOO]

[Nes03]

[NY90]

N. Koblitz. CM-curves with good cryptographic propertiesAlvances in Cryp-
tology — CRYPTO ' 1991vol. 576 ofLecture Notes in Computer Sciengm.
279-287, 1992.

P.C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systemd.ecture Notes in Computer Sciendd09:104-113, 1996.

K. Kurosawa and T. Takagi. Some RSA-based encryption schemes with tight
security reduction. IrAdvances in Cryptology — ASIACRYPT ' 2008I. 2894
of Lecture Notes in Computer Scienpg. 19-36, 2003.

A.K. Lenstra and E.R. Verheul. Selecting cryptographic key sizésurnal of
Cryptology 14(4):255-293, 2001.

G.J. Lay and H.G. Zimmer. Constructing elliptic curves with given group order
over large finite fields. IPANTS '94 vol. 877 of Lecture Notes in Computer
Sciencepp. 250-263, 1994.

U. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete logarithms. Bdvances in Cryptology — CRYPTO ;9.
839 ofLecture Notes in Computer Scienpp. 271-281, 1994.

A. Menezes.Elliptic Curve Public Key Cryptosystemeol. 234 of The Kluwer
International Series in Engineering and Computer Scienikktuwer Academic
Publishers, 1993.

A.J. Menezes, T. Okamoto and S.A. Vanstone. Reducing elliptic curve logarithms
to a finite field.IEEE Transactions on Information Thegi39:1639-1646, 1993.

S. Micali and L. Reyzin. Physically Observable Cryptography (extended ab-
stract). InTheory of Cryptography Conference, TCC 200dl. 2951 ofLecture
Notes in Computer Sciengap. 278-296, 2004.

A. Menezes, , P. van Oorschot and S. Vanstodandbook of Applied Cryptog-
raphy. Discrete Mathematics and its Applications. CRC Press, 1997. Available
athttp://www.cacr.math.uwaterloo.ca/hac/

U. Maurer and S. Wolf. The Diffie-Hellman protocolDesigns, Codes, and
Cryptography 19:147-171, 2000.

Nessie. NESSIE security report.  version 2.0, 2003.
http://www.cryptonessie.org/.

M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attack. IrProc. of the Twenty-Second Annual ACM Symposium on
Theory of Computingop. 427-437. ACM, 1990.



106

[OPO014a]

[OPO1b]

[0U98]

[Paiog]

[PGO7]

[P0i00]

[P0i02]

[Pol78]

[Rab79]

[RS92]

[SA98]

[SB04]

[Schos]

BIBLIOGRAPHY

T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for
the security of cryptographic schemes.AKC 2001 vol. 1992 ofLecture Notes
in Computer Sciencggp. 104-118, 2001.

T. Okamoto and D. Pointcheval. REACT: Rapid enhanced-security asymmetric
cryptosystem transform. I@T-RSA 200.1vol. 2020 ofLecture Notes in Com-
puter Sciencegpp. 159-175, 2001.

T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as fac-
toring. In Advances in Cryptology — EUROCRYPT 19¢&. 1403 ofLecture
Notes in Computer Sciengep. 308-318, 1998.

P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. IrAdvances in Cryptology — EUROCRYPT 1998l. 1592 ofLecture
Notes in Computer Sciengep. 223238, 1999.

J. Patarin and L. Goubin. Trapdoor one-way permutations and multivariate poly-
nomials eztended version ). In ICICS 1997 vol. 1334 ofLecture Notes in
Computer Sciencgp. 356—368, 1997.

D. Pointcheval. Chosen-ciphertext security for any one-way cryptosystem. In
PKC 200Q vol. 1751 ofLecture Notes in Computer Scienpp. 129-146, 2000.

D. Pointcheval. Practical security in public-key cryptographyCi¥sC '01, vol.
2288 ofLecture Notes in Computer Scienpp. 1-17, 2002.

J.M. Pollard. Monte carlo methods for index computation motathematics
of Computation32:918-924, 1978.

M.O. Rabin. Digitalized signatures and public key functions as intractable as fac-
torisation. Technical Report 212, MIT Laboratory for Computer Science, 1979.

C. Rackoff and D.R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. Auvances in Cryptology — CRYPTO 199bl.
576 ofLecture Notes in Computer Scienpp. 433-444, 1992.

T. Satoh and K. Araki. Fermat quotients adn the polynomial time discrete log
algorithm for anomalous elliptic curve€omm. Math. Univ. Sancti Pay#7:81—
92, 1998.

M. Scott and P.S.L.M Barreto. Generating more MNT elliptic curves. Cryptology
ePrint Archive, Report 2004/058, 2004t tp://eprint.iacr.org/.

R. Schoof. Counting points on elliptic curves over finite fieldsTheorie de
Nombres de BourdeauX:219-254, 1995.



BIBLIOGRAPHY 107

[Sem98] |. Semaev. Evaluation of discrete logarithms in a group-tofsion points of
an elliptic curve in characteristie. Mathematics of Computatio$7:353—-356,
1998.

[Sha49] C.E. Shannon. Communication theory of secrecy systais.Sys. Tech. Jour-

nal, 28:656—715, 1949.

[Sho00] V. Shoup. Using hash functions as a hedge against chosen ciphertext attacks. In
Advances in Cryptology — EUROCRYPT ’ 2000l. 1807 ofLecture Notes in
Computer Sciencep. 275-288, 2000.

[Sho01] V. Shoup. A proposal for an ISO standard for public key encryption. Technical
Report 2.1, 2001.

[Sho04] V. Shoup. Draft ISO/IEC 18033-2: An emerging standard for public-key encryp-
tion. Technical report, ISO/IEC, 2004.

[Sil86] J.H. Silverman.The arithmetic of elliptic curves/ol. 106 of Graduate Texts on
Mathematics Springer Verlag, 1986.

[Sma99] N. Smart. The discrete logarithm problem on elliptic curves of traceJonenal
of Cryptology 12(3):193-196, 1999.

[STO2] K. Sakurai and T. Takagi. A reject timing attack on an IND-CCA2 public-key
cryptosystem. INCISC 2002 vol. 2587 ofLecture Notes in Computer Science
pp. 359-373, 2002.

[Ste03] J. Stern. Why provable security matters?Atlvances in Cryptology — EURO-
CRYPT ' 2003 vol. 2656 ofLecture Notes in Computer Sciengp. 449-461,
2003.

[Til99] H.C.A.van Tilborg. Fundamentals of Cryptology. A Professional Reference and

Interactive Tutoria) vol. 528. Kluwer Academic Publishers SECS, 1999.

[Wat69] W. Waterhouse. Abelian varieties over finite fieldsin. SciEcole Norm. Sup.
4(2):521-560, 1969.

[Wil80] H.C Williams. A modification of the RSA public-key encryption proceduieEE
Transactions on Information Theqr6(6):726—729, 1980.

[WSI02] Y. Watanabe, J. Shikata and H. Imai. Equivalence between semantic security and
indistinguishability against chosen ciphertext attack?KC 2003 vol. 2567 of
Lecture Notes in Computer Scienpg. 71-84, 2002.

[X9.99] ANSI X9.62-1998. Public key cryptography for the financial services industry :
The elliptic curve digital signature algorithm (ECDSA), 1999. Approved Ameri-
can National Standard.



108 BIBLIOGRAPHY

[X9.01] ANSI X9.63-2001. Public key cryptography for the financial services industry,
key agreement and key transport using elliptic curve cryptography, 2001. Work-
ing dratft.



